Актуально на:
26 февраля 2021 г.

Распоряжение Правительства РФ от 28.11.2020 N 3143-р <Об утверждении перечня видов технологий, признаваемых современными технологиями в целях заключения специальных инвестиционных контрактов>

ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ

РАСПОРЯЖЕНИЕ
от 28 ноября 2020 г. N 3143-р

В соответствии со статьей 6 Федерального закона "О промышленной политике в Российской Федерации" утвердить прилагаемый перечень видов технологий, признаваемых современными технологиями в целях заключения специальных инвестиционных контрактов.

Председатель Правительства
Российской Федерации
М.МИШУСТИН

Утвержден
распоряжением Правительства
Российской Федерации
от 28 ноября 2020 г. N 3143-р

ПЕРЕЧЕНЬ
ВИДОВ ТЕХНОЛОГИЙ, ПРИЗНАВАЕМЫХ СОВРЕМЕННЫМИ ТЕХНОЛОГИЯМИ
В ЦЕЛЯХ ЗАКЛЮЧЕНИЯ СПЕЦИАЛЬНЫХ ИНВЕСТИЦИОННЫХ КОНТРАКТОВ

Наименование современной технологии
Наименование промышленной продукции, серийное производство которой должно быть освоено в результате разработки и внедрения или внедрения соответствующего вида современной технологии
Код ОКПД2 промышленной продукции в соответствии с Общероссийским классификатором продукции по видам экономической деятельности
Требования к основным техническим характеристикам (свойствам) промышленной продукции и (или) требования к современной технологии, то есть к способу (методам) производства промышленной продукции (для продукции горнодобывающих производств указывается только способ (метод) производства промышленной продукции)
Срок, по истечении которого включенная в перечень современная технология утрачивает актуальность
Сведения об отнесении (неотнесении) современной технологии к приоритетам научно-технологического развития Российской Федерации, установленным в соответствии с Указом Президента Российской Федерации "О Стратегии научно-технологического развития Российской Федерации"
Сведения об обязательности (необязательности) включения в специальный инвестиционный контракт обязанности инвестора, предусмотренной статьей 18.2 Федерального закона "О промышленной политике в Российской Федерации"
Сведения о потенциале развития современной технологии
Группа, к которой относится технология
Современные технологии сферы ведения Минпромторга России
1.
Технология производства керамогранита
керамогранит
23.31.10.120
технические характеристики: водопоглощение 0,3 процентов; предел прочности при изгибе 40 Мпа; морозостойкость - 150 циклов; технология производства: керамогранит, изготавливаемый методом полусухого прессования, (тонкостенные изделия, изготавливаемые методом прессования порошкообразной массы на основе глинистых и (или) других неорганических материалов под высоким давлением)
1 января 2040 г.
да
обязательно
керамогранит - это новая востребованная на рынке современная продукция высокого качества с максимально низким уровнем водопоглощения.
Потенциал развития технологии в изминении свойств конечного продукта
2
2.
Технология изготовления фасонного литья стали и чугуна, при помощи одноразовой модельной оснастки в методе формообразования холодно-твердеющих смесей на основе ALPHA-SET процесса
чугун передельный для литейного производства
24.10.11.122
метод производства гарантирует максимальное отсутствие внутренних дефектов в теле отливки как в серийном изготовлении, так и в одноразовом исполнении отливок;
метод универсален и подходит практически для любых сплавов; при изготовлении отливок методом формообразования холодно-твердеющих смесей на основе ALPHA-SET процесса с применением одноразовой модельной оснастки появляется возможность производить мелкосерийную продукцию, а также значительно сокращается время изготовления продукции и снижается ее себестоимость
31 января 2030 г.
да
обязательно
при использовании многоразовой модельной оснастки с методом формообразования холодно-твердеющих смесей появляется возможность сделать производство крупносерийным, а также повысить точность изделий
3
3.
Технология производства стали, круглой заготовки и высококачественных слябов
сталь
24.10.2
характеристики прямоугольной заготовки:
геометрические параметры - слябы толщиной от 250 до 400 мм и шириной от 1800 до 2500 мм;
качественные параметры - дефекты макроструктуры слябов не более 1 балла по ГОСТ Р 58228-2018 "Заготовка стальная непрерывнолитая. Методы контроля и оценки макроструктуры";
низкая концентрация газов и вредных примесей (азот менее 0,005 процента, водород менее 0,0002 процента, общий кислород менее 0,0020 процента, сера менее 0,0010 процента) (для варианта использования шихтовки плавки с применением прямовосстановленного железа возможно достижение низкой концентрация цветных примесей (Cr+Sn+Sb+Cu+Ni+Mo+As) менее 0,05 процента);
высокое качество поверхности и геометрии слябовой заготовки (допуски по толщине +/- 3 мм;
допуски по ширине +/- 0,5 мм;
отклонение от плановой длины +/- 50 мм);
характеристики круглой заготовки:
геометрические параметры - круглая заготовка диаметром от 170 до 455 мм качественные параметры - низкая концентрация газов и вредных примесей:
сталь для колес (азот менее 0,005 процента, водород менее 0,0001 процента, общий кислород менее 0,0020 процента) (для варианта использования шихтовки плавки с применением прямовосстановленного железа возможно снижение концентрации цветных примесей (Cr+Sn+Sb+Cu+Ni+Mo+As) менее 0,05 процента);
сталь для бесшовных труб (азот менее 0,005 процента, водород менее 0,0002 процента, общий кислород менее 0,0025 процента);
высокое качество поверхности и геометрии круглой заготовки (диаметр +/- 1 процент; овальность менее 1 процент; кривизна заготовки - не более 2,5 мм/м; отклонение от плановой длины +/- 30 мм)
1 июля 2045 г.
да
необязательно. Установление обязательства, не требуется так как в целях совершенствования технологии может не быть необходимости в создании результата интелектуальнной деятельности на основе данной технологии
технология подразумевает дальнейшее развитие (использование дополнительных технических решений, применение которых позволит изготавливать тонкие слябы с минимальным содержанием цветных примесей)
2
4.
Технология изготовления ультратонкого (с толщиной от 0,80 мм) горячекатаного рулонного проката из углеродистых, микро-, низко- и высоколегированных, а также высокопрочных сталей по совмещенной технологии разливки тонких слябов и прямой бесконечной горячей прокатки, исключающей промежуточные операции складирования, охлаждения и повторного газового нагрева/подогрева заготовок
прокат листовой горячекатаный стальной, без дополнительной обработки
24.10.3
технические характеристики:
толщина проката 0,8 - 12,7 мм;
высокая точность изготовления (поле допусков по толщине от 7 до 11 процентов от EN 10051 или от 18 до 40 процентов - EN 10131);
удельный вес рулона 7 - 21 кг/мм;
высокая плоскостность (не более 13 I-Units на 95 процентов длины полосы);
отсутствие дефектов поверхности; снижение выбросов монооксида углерода и оксида азота относительно классической технологии производства плоского проката.
Технология производства:
непрерывная разливку тонких слябов и бесконечная прокатка этих слябов до конечной толщины в двух группах клетей с промежуточным индукционным подогревом;
прокатанная полоса после ускоренного охлаждения сматывается в рулон, при этом все агрегаты напрямую связаны между собой посредством бесконечной полосы, а ее деление на рулоны заданной массы производится с помощью высокоскоростных ножниц, расположенных перед участком моталок
5 июня 2030 г.
да
обязательно
по мере освоения производства ультратонкой полосы и накопления достаточного опыта, возможен выпуск проката из мягких сталей меньших толщин, например до 0,60 мм, а также производство тонкого и широкого высокопрочного проката с экономным легированием для автомобильной промышленности взамен холоднокатаного, в котором комплекс свойств либо недостижим, либо композиция химического состава приводит к чрезмерному удорожанию продукции
2
5.
Технология по производству высококачественного горячекатаного и холоднокатаного плоского проката из легированных нержавеющих сталей и коррозионностойких, жаростойких и жаропрочных сплавов, с использованием современных цифровых решений для удовлетворения потребностей отраслей промышленности Российской Федерации (включая атомное и энергетическое машиностроение, судостроение, авиастроение, оборонную, космическую, химическую промышленность, строительство, металлургию и иные отрасли), а также в целях развития экспортного потенциала Российской Федерации
прокат листовой горячекатаный из нержавеющих сталей, без дополнительной обработки, шириной не менее 600 мм
24.10.33
технические характеристики в соответствии с:
ГОСТ 5632-2014 "Легированные нержавеющие стали и сплавы коррозионно-стойкие, жаростойкие и жаропрочные";
ГОСТ 10994-74 "Сплавы прецизионные";
ГОСТ Р 54908-2012 "Металлопродукция из жаростойкой стали. Технические условия";
ГОСТ 19903-2015 "Прокат листовой горячекатаный. Сортамент";
ГОСТ 19904-90 "Прокат листовой холоднокатаный. Сортамент";
ГОСТ 7350-77 "Сталь толстолистовая коррозионно-стойкая, жаростойкая и жаропрочная. Технические условия";
ГОСТ 5582-75 "Прокат тонколистовой коррозионно-стойкий, жаростойкий и жаропрочный. Технические условия";
ГОСТ 24982-81 "Прокат листовой из коррозионно-стойких, жаростойких и жаропрочных сплавов. Технические условия";
ГОСТ 14082-78 "Прутки и листы из прецизионных сплавов с заданным температурным коэффициентом линейного расширения. Технические условия";
ГОСТ 4986-79 "Лента холоднокатаная из коррозионно-стойкой и жаростойкой стали. Технические условия".
Отраслевые Технические условия DIN EN 10088-1:2005
1 января 2071 г.
да
неприменимо для разрабатываемой технологии
технология обеспечит: развитие сопутствующих отраслей в Российской Федерации за счет производства продукции с новыми для Российской Федерации уникальными свойствами;
развитие спроса на данный вид продукции, ранее не производимой в Российской Федерации;
развитие экспортных поставок новой для Российской Федерации продукции. В ходе реализации технологии планируется непрерывное усовершенствование свойств продукции и разработка новых видов продукции с новыми свойствами и повышенными качественными характеристиками
1
6.
Технология производства жести с оловянным покрытием ("белая" жесть) для изготовления тарной и упаковочной продукции, укупорочных средств
прокат листовой из нелегированных сталей, шириной не менее 600 мм, плакированный, с гальваническим или иным покрытием
24.10.51
жесть с оловянным покрытием со следующими техническими характеристиками:
толщина от 0,10 до 0,36 мм;
ширина от 630 до 1250 мм;
термическая обработка - колпаковый или непрерывный отжиг;
масса покрытия на холоднокатаный прокат от 1 до 17 г/м2 (на две стороны). Нормативная документация: EN 10202 "Жесть белая с электролитическим покрытием хромом/оксидом хрома для обжатия в холодном состоянии", ASTM A623M, JIS G 3303;
требования к технологии: жесть однократной и двукратной прокатки;
подкат для "белой" жести производится на непрерывных станах "тандем" холодной прокатки или на реверсивных станах холодной прокатки из горячекатаного травленого материала (полосы) из углеродистых марок сталей; покрытие (олово) наносится на агрегате электролитического лужения с дальнейшей пассивацией и защитой
1 января 2051 г.
да
обязательно
существует перспектива создания и разработки новых видов тары, укупорочных средств для решения экологических вопросов. Оборудование для реализации данной технологии производится ведущими компаниями производителями оборудования.
3
7.
Технология производства горячекатаного сортового и фасонного проката
прокат сортовой горячекатаный полосовой прочий, без дополнительной обработки, включая смотанный после прокатки, из прочих легированных сталей
24.10.66.124
технические характеристики: рессорная полоса повышенной точности 40 - 120 мм на 4,5 - 57 мм по ГОСТ 7419 "Прокат стальной горячекатаный для рессор.
Сортамент" и EN 10058 "Полоса узкая толстая горячекатаная и листовой прокат общего назначения. Размеры и допуски на форму и размеры".
Обезуглероженный слой готовой продукции из рессорной полосы до 1 процента по ГОСТ 14959 "Металлопродукция из рессорно-пружинной нелегированной и легированной стали";
требования к технологии:
рессорная полоса изготавливается с применением 13-и клетевого прокатного стана
1 июля 2045 г.
да
необязательно, так как в целях совершенствования технологии может не быть необходимости в создании результатов интеллектуальной деятельности на основе данной технологии
технология подразумевает дальнейшее развитие в области освоения продукции из новых марок сталей и новых типоразмеров (производство проката из нержавеющих марок сталей, освоение профилей полособульбов;
возможность изготовления специальных профилей)
2
8.
Технология производства сортового проката для машиностроения со специальной отделкой поверхности из конвертерной стали с дробеметным удалением окалины на непрерывных автоматизированных линиях. Технология износостойкого электролитического хромирования стальных прутков на горизонтальных непрерывных агрегатах для пневматической и гидравлической техники
прутки холоднотянутые
24.31
технические характеристики выпускаемой продукции:
широкий диапазон диаметров и марочного состава, с высокими допусками по размеру и минимальной шероховатостью поверхности;
высокая прочность и ударная вязкость;
отсутствие внутренних и поверхностных дефектов для производства пружин и деталей трансмиссии машин, станков-автоматов, производства пружин, холодной высадки крепежных изделий и шарикоподшипников, прессования, ковки;
5 июня 2030 г.
да
обязательно
высокий потенциал развития технологии обеспечивается за счет возможности предложения машиностроительной отрасли широкого марочного состава легированных сталей высокой прочности и усталостной выносливости
2
9.
Технологии изготовления новых конструкций скреплений верхнего строения высокоскоростных железнодорожных магистралей
проволока холоднотянутая
24.34.1
технические характеристики: твердость 42-49 HRC;
глубина обезуглероженного слоя не более 2 процентов от диаметра прутка; отсутствие изломов, трещин после обжатия клемм;
технология производства:
заготовка мерной длины горячекатанного или калиброванного проката подвергается гибке-штамповке на нескольких прессах (или многопозиционном прессе) для придания необходимой геометрической формы;
термообработка заготовки клеммы (операции закалки и отпуска) происходит для получения необходимых механических свойств
1 июня 2040 г.
да
обязательно
потенциал развития данной технологии связан с развитием высокоскоростных железнодорожных магистралей и необходимостью импортозамещения деталей скрепления верхнего пути
3
10.
Технологии производства калиброванного проката с использованием операций специальной термической обработки и отделкой поверхности для автомобильной промышленности
прутки холоднонятянутые и профили со сплошным сечением из нелегированных сталей
24.31.1
технические характеристики: калиброванный прокат со сфероидизирующим отжигом и фосфатным покрытием по ГОСТ 10702-78 "Прокат из качественной конструкционной углеродистой и легированной стали для холодного выдавливания и высадки" или другой нормативной документации;
калиброванный прокат со специальной отделкой поверхности из углеродистых и легированных марок стали по ГОСТ 14955-77 "Сталь качественная круглая со специальной отделкой поверхности";
требования к технологии:
сфероидизирующий отжиг в колпаковых печах, с защитной атмосферой при температуре 715 - 755 градусов Цельсия, с обеспечением микроструктуры состоящей из феррита и перлита, с не менее 80 процентов зернистого перлита в перлитной составляющей;
фосфатирование садочным методом, с последующим обжатием фосфата; плотность фосфатного покрытия не менее 8 г/м2;
специальная отделка поверхности подразумевает достижение требуемого качества поверхности путем удаления поверхностного слоя
1 июня 2040 г.
да
обязательно
внедрение технологии позволит значительно повысить качество конечных изделий, изготавливаемых из калиброванного проката
3
11.
Технологии производства проволоки с покрытиями
проволока холоднотянутая
24.34.1
основные требования к проволоке состоят из оценки толщины, качества покрытия и уровня прочности готового металлоизделия;
проволока оцинкованная низкоуглеродистая для габионных конструкций по ГОСТ Р 51285-99 "Сетки проволочные крученые с шестиугольными ячейками для габионных конструкций";
проволока низкоуглеродистая с покрытием "Galfan" по ГОСТ Р 58078-2018 "Проволока стальная и изделия из нее. Покрытия из цветных металлов на стальной проволоке";
проволока из сварочных марок стали по ТУ 1227-036-00187240-2006, ТУ 1227-036-00187240-2006
1 июня 2040 г.
да
обязательно
Продукция, включая проволоку сварочную для высокопрочных марок сталей и проволоку для габионных изделий, перспективна и конкурентоспособна на мировом рынке. Продукция востребована. В части горячий покрытий цинком или гальфаном особенностью технологии является большая масса покрытия (более 265 г/м2). С учетом более высокой коррозионной стойкости покрытия "гальфан" и его меньшего удельного веса требования по массе гальфана представляются завышенными. Именно использование "гальфана" может обеспечить получение высококачественной продукции. Оборудование для реализации данной технологии производится ведущими компаниями производителями оборудования
3
12.
Технология производства бронзированной проволоки для бортовых колец автомобильных шин
проволока холоднотянутая
24.34.1
технические характеристики:
допуски на размер профиля:
0,050 мм для диаметров от 1,5 до 2,05 мм; 0,060 мм для диаметров более 2,05 до 2,94 мм; 0,070 мм для диаметров более 2,94 до 4,00 мм;
механические свойства:
предел прочности 700 - 980 МПа для диаметров от 1,5 до 2,5 мм термически необработанной проволоки;
предел прочности 640 - 930 МПа для диаметров от 2,5 до 4,0 мм термически необработанной проволоки;
предел прочности 400 - 540 МПа для диаметров от 1,5 до 4,0 мм термически обработанной проволоки; относительное удлинение 100 не менее 12 процентов для термически обработанной проволоки;
минимальная масса покрытия на единицу площади поверхности г/м2
для диаметров от 1,50 до 1,99 мм - 210;
для диаметров от 2,00 до 2,19 мм - 225;
для диаметров от 2,20 до 2,69 мм - 240;
для диаметров от 2,70 до 2,99 мм - 255;
для диаметров от 3,00 до 3,39 мм - 265;
для диаметров от 3,40 до 4,0 мм - 285;
количество алюминия в покрытии должно быть 4,50 Al процента 5,50;
суммарное количество редкоземельных металлов (церия и лантана) в покрытии с мишметаллами должно быть не менее 0,01 процента
1 июня 2030 г.
да
обязательно
потенциал развития данной технологии связан с постоянно растущим спросом на гражданские автомобильные шины и увеличением спроса на шины для министерства обороны Российской Федерации
2
13.
Технология прямого многократного волочения стальной катанки и нанесения алюмоцинкового покрытия на поверхность проволоки погружным способом на непрерывной линии агрегата алюмоцинкования
Проволока холоднотянутая из нелегированной стали
24.34.11
стальная проволока диаметрами от 1,5 до 4 мм покрытая сплавом из цинка - алюминия и сплавом цинк - алюминий, мишметалл
31 мая 2040 г.
да
обязательно
потенциал развития в области расширения сортамента в сторону уменьшения диаметра до 1,00 мм и в сторону увеличения диаметра до 5,00 мм
2
14.
Технология плазменного модифицирования металлических поверхностей
проволока стальная канатная из нелегированной стали
24.34.11.120
производимая продукция будет обеспечивать лучший захват смазки, а следовательно лучшие условия для сухого волочения;
структурированный слой продукции снижает вероятность разрушения (выкрашивания) поверхностного слоя проволоки в ходе волочения; защита поверхности проволоки от коррозии из-за пассивирующего слоя окисла железа;
требование к технологии:
использование метода плазменного модифицирования (вакуумно-дугового разряда) для создания на поверхности катанки структурированного слоя толщиной от нескольких микрон до нескольких десятков микрон;
замена экологически небезопасных методов обработки катанки (травление серной кислотой);
снижение энергозатрат для обработки катанки
1 июня 2030 г.
да
обязательно
технологии плазменной модификации поверхности металлов могут быть использованы:
для обработки труб на трубопрокатных заводах, ремонтных базах, а также для ремонта труб в трассовых условиях;
для очистки от окалины и ржавчины штучных металлических изделий и горячих заготовок с температурой до 1260 градусов Цельсия;
для очистки полос и листов из черных и любых цветных металлов и сплавов со сквозной протяжкой или намоткой внутри установок на катушки;
для подготовки поверхности металлов перед плакировкой давлением и взрывом; для очистки сварочной проволоки на крупных машиностроительных и судо-строительных предприятиях;
для плазменной очистки фольги и тонких лент.
Таким образом, данная технология может внести свой вклад в развитие конкурентоспособности продукции следующих отраслей: производство проволочной продукции, машиностроение, судостроение и других отраслей экономики, связанных с обработкой металлов и сплавов
2
15.
Технология производства латунированного металлокорда и бронзированной бортовой проволоки для шинной промышленности из конвертерной катанки диаметром 4,5 - 5,5 мм с механическим удалением окалины, получением заготовки диаметром до 1,0 мм без промежуточного патентирования, патентированием в печах кипящего слоя и растворе полимера, термодиффузией медного и цинкового покрытия в индукционной установке, а так же свивкой металлокорда на машинах двойного кручения
латунированный металлокорд класса прочности NT, HT и SHT для шинной промышленности;
бронзированная бортовая проволока класса прочности NT и HT для шинной промышленности
24.34.11.190
сырьем для производства металлокорда и бортовой проволоки является катанка диаметром 4,5 - 5,5 мм из стали с содержанием углерода от 0,7 до 0,9 процентов, предлагаемый технологический процесс производства металлокорда включает операции:
механическое удалениеокалины и сухого волочения катанки на промежуточную проволочную заготовку диаметром 0,85 - 1,80 мм на 13-кратных волочильных станах;
патентирование и гальванотермическое латунирование проволоки диаметром 0,85 - 1,80 мм на 48-ниточных непрерывных агрегатах с патентированием в растворе полимера и термодиффузионной обработкой медного и цинкового покрытия в индукционной установке;
мокрое волочение латунированной заготовки на проволоку диаметром 0,15 - 0,41 мм на 25-кратных волочильных станах;
свивка металлокорда диаметром 0,60 - 2,0 мм из нескольких проволок диаметром 0,15 - 0,41 мм на многошпульных машинах двойной свивки;
испытательный контроль и упаковку катушек с металлокордом в герметичную картонную тару весом нетто до 1500 кг;
Технологический процесс производства бортовой проволоки включает операции: механическое удаление окалины и сухого волочения катанки на промежуточную проволочную заготовку диаметром 1,5 - 2,9 мм на 7 - 13-кратных волочильных станах;
патентирование и подготовку к волочению заготовки диаметром 2,3 - 2,9 мм на 20-ниточных непрерывных агрегатах патентирования;
в сухое волочение заготовки диаметром 2,3 - 2,9 мм на проволочную заготовку диаметром 0,89 - 1,3 мм на 12-кратных волочильных станах;
низкотемпературный отпуск в кипящем слое и бронзирование бортовой проволоки диаметром 0,89 - 2,1 мм на 20-ниточных непрерывных агрегатах;
испытательный контроль и упаковку мотков бортовой проволоки в герметичную картонную тару весом нетто до 800 кг
5 июня 2030 г.
да
обязательно
высокий потенциал развития технологии обеспечивается за счет возможности создания широкой продуктовой линейки сортамента металлокорда для шинной промышленности и бортовой проволоки различной прочности и высокой выносливости
2
16.
Технология производства катодов медных
катоды медные (медь рафинированная необработанная)
24.44.13.110
химический состав согласно ГОСТ 859 "Медь". Содержание меди не менее 99,99 процентов, содержание примесей не более 0,0065 процента
31 декабря 2030 г.
да
обязательно
дальнейшее развитие электролитического рафинирования меди может быть направлено на повышение плотности тока до 400 А/м2. и выше за счет особых режимов электролиза
2
17.
Технология создания оборудования малотоннажного производства нанодисперстных порошков меди для нового поколения резьбовых смазок
нанодисперсные медные порошки для резьбовых смазок (порошки медные)
24.44.21.110
технические параметры: дисперсия 20 - 40 НМ и 20 - 40 мкм;
форма частиц - сферическая;
выход целевой фракции 70 процентов по массе;
содержание примесей менее 0,05 процента;
содержание кислорода - 0,02 процента
1 января 2040 г.
да
неприменимо
физико-металлургические методы получения металлических порошков создали возможность управлять дисперсностью и формой частиц. Предлагаемые технологии относятся к передовому способу в этой области и обеспечат повышение экологичности используемых резьбовых смазок за счет отсутствия в них свинца и цинка. Также общее снижения металлической добавки в составе, повысят эксплуатационные характеристики резьбовых смазок при снижении себестоимости производства. Потенциалом развития современной технологии будет являться расширение области их использования и создания более совершенных резьбовых смазок, что обеспечит устойчивый спрос на них в России и за рубежом
1
18.
Технология производства сверхтонкой медной электролитической фольги
фольга медная толщиной не более 0,15 мм
24.44.25
технические характеристики: толщина медной фольги от 9 до 105 мкм;
ширина рулона фольги не более 1290 мм.;
шероховатость глянцевой стороны не более 0,43 мкм;
временное сопротивление для фольги гальваностойкой не менее 207 Н/мм2;
для фольги литий-ионных аккумуляторов не менее 310 Н/мм2;
относительное удлинение для фольги гальваностойкой не менее 2 процента, для фольги литий-ионных аккумуляторов не менее 3,5 процента;
требования к технологии: производство фольги должно осуществляться электролитическим способом с использованием электролизера барабанного типа
31 декабря 2028 г.
да
обязательно
серийное производство продукции непрерывного, электролизного производства которое освоено в результате разработки и внедрения современных технологий, не имеет аналогов в Российской Федерации
2
19.
Технология переработки молибденсодержащих отработанных катализаторов в оксид молибдена и оксид кобальта
оксид молибдена и оксид кобальта (металлы цветные и продукция из них;
спеченные материалы (керметы), зола и остатки, содержащие металлы или соединения металлов, прочие)
24.45.3
требования к продукции: химически чистый оксид молибдена и оксид кобальта;
массовая доля примесей - не более 0,0002 - 0,015 процента;
соответствие национальным и международным стандартам;
требования к технологии: основное сырье: отработанные молибден-никелевые/кобальтовые катализаторы процесса гидрокрекинга нефтеперерабатывающего производства, обожженные и очищенные от всех примесей;
технологический процесс должен включать такие стадии, как: измельчение, стадия противоточного выщелачивания и очистка от фосфора, осветление пульпы, фильтрация кека, осаждение и фильтрация Мо-кислоты, сушка и прокалка Мо-кислоты, осаждение искусственного повеллита, осаждение монооксида углерода
5 июня 2035 г.
да
обязательно
потенциалом развития технологии является возможность извлечения кобальта и молибдена из отработанных катализаторов до 99 процентов. Патентная защита разработанной технологии
2
20.
Технология получения магния методом непрерывного электролиза расплава безводных хлоридов магния
металлический магний
24.45.30.140
химический состав должен соответствовать требованиям ГОСТ 804-93 "Магний первичный в чушках";
поверхность чушек в соответствии с ГОСТ 804-93 "Магний первичный в чушках" должна быть без флюсовых включений и продуктов горения магния;
на поверхности чушек, не подвергавшихся антикоррозионной обработке допускаются флюсовые включения и продукты горения общей площадью не более 25 мм2 и глубиной не более 1 мм
1 января 2050 г.
да
обязательно
внедрение указанной технологии будет способствовать разработке новых технологий по получению сплавов на основе магния. Проект является в большей степени экспорториентированным. Мировой рынок магния растет на 4 - 6 процентов
2
21.
Технология плазменно-дугового переплава
полуфабрикаты из титановых сплавов (титан и изделия из него, сплавы на основе титана, порошки)
24.45.30.180
технические характеристики: однородные слитки, не содержащие металлургических дефектов при вовлечении более 50 процентов титановых, вторичных шихтовых материалов в виде стружки
31 декабря 2040 г.
да
обязательно
в России плазменно-дуговой переплав титановых сплавов в промышленном масштабе не применяется. Внедрение данной технологии позволит повысить качество выпускаемой продукции из титановых сплавов и снизит ее себестоимость за счет вовлечения отходов
2
22.
Технология полного цикла производства металлопорошковых композиций сплавов на основе алюминидов титана различного фракционного состава
титан и изделия из него, сплавы на основе титана, порошки титана
24.45.30.180
заявленные металлопорошковые композиций состоят из интерметаллидных сплавов на основе алюминидов титана (в первую очередь - гамма-TiAl);
получение металлопорошковых композиции может быть осуществлено с помощью двух основных методов - EIGA и (или) PREP;
выбор оборудования: осуществляется в соответствии с выбранным методом получения металлопорошковых композиций;
о может быть применено оборудование для плазменной сфероидизации металлопорошковых композиций;
сепарация и рассев по фракциям (10 - 63 мкм;
40 - 100 мкм и т.д.) проводятся на соответствующем оборудовании
1 января 2035 г.
да
обязательно
потенциал развития заявленной технологии крайне высок, а сама технология имеет стратегическое значение. В настоящее время работы по созданию и исследованию жаропрочных сплавов на основе интерметаллида TiAl и технологий их производства и обработки активно проводятся во всех ведущих странах мира однако только компания General Electrics впервые применила литые лопатки из гамма-сплава Ti-48Al-2Cr-2Nb, в шестой и седьмой ступенях турбины низкого давления (ТНД) газотурбинного двигателя нового поколения GEnx-1B для самолета Boeing 787 Dreamliner, который успешно совершил первый коммерческий полет в 2012 году. В России в области создания и апробации гамма-сплавов помимо основной объем фундаментальных и прикладных исследований проводится во ФГУП "ВИАМ".
2
23.
Технология производства высокоточного проката из титана и сплавов на основе титана авиационного и медицинского применения
проволока, прутки, профили титановые
24.45.30.183
технические характеристики промышленной продукции: пруток диаметром от 60 до 120 мм.;
размер макрозерна прутков до 6 баллов включительно (в полном поперечном сечении);
тональность макроструктуры - матовый фон;
допускаются отдельные блестящие зерна до 5 баллов;
пруток диаметром менее 60 мм.:
размер макрозерна прутков - до 4 баллов включительно (в полном поперечном сечении);
тональность макроструктуры - матовый фон;
допускаются отдельные зерна смешанного фона
31 декабря 2040 г.
да
неприменимо
создание автоматизированного сквозного, от ковки слитка до производства готового прутка промышленного производства организованного в рамках одной структурной единицы (цеха) при использовании самого современного высокопроизводительного оборудования создает конкурентные преимущества как по качеству выпускаемой продукции, так и по минимизации затрат на ее производство. Развитие производства титановых изделий для медицинского назначения позволит увеличить объемы выпускаемой продукции за счет увеличения рынка сбыта
1
24.
Технология механической обработки дисков и колец из титановых сплавов для авиационного двигателестроения с максимальным диаметром до 3500 мм
детали газотурбинных двигателей, газотурбинных энергетических установок (поковки, штамповки, кольца титановые)
24.45.30.188
требование к технологии: производство деталей дисков, катушек, колец из титановых сплавов с чистовой механической обработкой с максимальным диаметром до 3500 мм;
наличие необходимого технологического процесса, оборудования и инструмента
31 декабря 2040 г.
да
неприменимо
на данный момент наблюдается тенденция к получению механически обработанных заготовок с минимальными припусками в условиях металлургического производства для крупных изделий. В связи с этим освоение производства деталей дисков, катушек, колец из титановых сплавов с чистовой механической обработкой для производства авиационных двигателей, газотурбинных энергетических установок, изделий машиностроения имеет потенциал развития
1
25.
Технология производства тонкостенных цельнометаллических незамкнутых конструкций в изотермических условиях из сплавов на основе титана
поковки, штамповки, кольца титановые
24.45.30.188
технические требования и характеристики: обеспечение высокого уровня и однородности механических свойств в готовом изделии при обеспечении высокой термической стабильности в эксплуатационных условиях
31 декабря 2040 г.
да
неприменимо
в России отсутствуют промышленные технологии по производству крупногабаритных изделий методом штамповки или формовки в состоянии сверхпластичности. Освоение и промышленное внедрение данной технологии повысит качество выпускаемой продукции из титановых сплавов и позволит расширить рынки сбыта (в частности материала роторного качества)
1
26.
Технология изготовления точных отливок из чугуна и стали в песчано-бентонитовых формах (гибкие литейные технологии)
трубы и профили пустотелые из чугуна
24.51.20
сложные и точные тонкостенные отливки и детали из серого, высокопрочного чугуна и стали для автомобильного, сельскохозяйственного, железнодорожного, трубопроводного, судостроительной и прочих отраслей машиностроения;
технические требования к изготавливаемым отливкам:
масса отливок - от 2 до 250 кг;
толщина стенок - от 3 мм;
сложность отливок - до 6 класса;
точность отливок по ИСО-1508062 - до 7 класса
31 декабря 2040 г.
да
обязательно
проект комплексных, гибких, автоматизированных, цифровых, кастомизированных техпроцессов и оборудования для изготовления точных отливок из чугуна и стали в песчано-бентонитовых формах - при помощи гибких литейных технологий направлен на создание производств с высокой степенью автоматизации. Известно, что данный процесс сочетает в себе такие технологии, как импульсно-нижнепрессовое уплотнение (ИНП-процесс), обеспечивающий технологический процесс изготовления форм (этот метод следует рассматривать как наиболее эффективный из известных в настоящее время процессов формообразования), в сочетании с вихревыми турбинными смесителями, которые реализуют принцип интенсивного смешивания в щадящем режиме, при котором не происходит разрушения песчинок. Высокое качество перемешивания формовочной смеси за короткий цикл обеспечивает снижение расхода электроэнергии.
Автоматизированный процесс, то есть имеющий цифровое программное обеспечение, позволит реализовать заявленные в проекте технические, экономические и социальные задачи - изготовление ответственных сложных точных отливок с толщиной стенок до 3 мм с повышенной точностью и качеством поверхностей, а также снижение расхода шихтовых и формовочных материалов до 25 процентов
2
27.
Технология центробежного литья безраструбных труб из чугуна с нанесением защитных покрытий на внутреннюю и внешнюю поверхность
трубы и профили пустотелые из чугуна (трубы чугунные)
24.51.20.110
данная технология позволяет изготавливать продукцию со следующими параметрами: негорючесть;
отсутствие выделения ядовитых веществ;
низкий уровень шума (не более 16 dB);
мерная длина продукции 3000 мм
31 декабря 2030 г.
да
обязательно
потенциал данной технологии заключается в импортозамещение продукции, а также в использовании отечественной мирового качества при реализации проектов гражданского строительства и реализации инфраструктурных объектов
3
28.
Технология изготовления емкостей для химической, нефтехимической и газовой отраслей методом гибридной лазерной сварки
емкостное оборудование для нефтехимической и газовой отрасли (резервуары, цистерны и аналогичные емкости из металлов прочие)
25.29.1
к технологии предъявляются требования по обеспечению механических характеристик, показателей ударной вязкости и значений твердости сварных соединений, выполненных методом лазер-гибридной сварки, как у основного металла, а также обеспечение равнопрочности в соответствии с международными стандартами
1 июля 2050 г.
да
обязательно
уровень потенциала развития технологии оценен как средний. Применение лазер-гибридной сварки при изготовлении толстостенного емкостного оборудования позволит снизить производственный цикл до 60 процентов за счет применения высокопроизводительного процесса лазерной сварки и значительного снижения материалоемкости из-за уменьшения разделки. Применение высокоинтенсивного концентрированного источника тепла в виде лазера, а также уменьшение размеров разделки, позволит снизить внутренние послесварочные напряжения и деформации, что повысит срок службы оборудования и значительно снизит вероятность внештатных ситуаций, связанных с нарушением герметичности сварных соединений в процессе эксплуатации в самых экстремальных условиях
3
29.
Технология сварки сталей перлитного класса методом Tandem Twin при изготовлении нефтехимического оборудования
емкостное оборудование для нефтехимической и газовой отрасли (резервуары, цистерны и аналогичные емкости из металлов прочие)
25.29.1
к технологии предъявляются требования по обеспечению механических характеристик, показателей ударной вязкости и значений твердости сварных соединений сталей перлитного класса, выполненных методом Tandem Twin, как у основного металла, а также обеспечение равнопрочности в соответствии с международными стандартами
1 июля 2050 г.
да
обязательно
уровень потенциала развития технологии оценен как средний. Применение комбинированного процесса сварки двумя дугами в одну сварочную ванну (tandem-процесс) с дополнительной подачей "холодной проволоки" к каждой дуге (twin-процесс) позволит уменьшить материалоемкость процесса изготовления емкостного оборудования за счет уменьшения ширины разделки и снизит производственный цикл. Также применение процесса tandem-twin позволит снизить тепловложение в сварной шов и околошовную зону, что снизит вероятность возникновения охрупчивания металла из-за перегрева при выполнении сварки и повысит стойкость сварных соединений к неблагоприятному влиянию низких температур при эксплуатации емкостного оборудования в регионах с низкими и экстремально низкими температурами окружающего воздуха
3
30.
Технология проектирования, изготовления и монтажа шаровых резервуаров для хранения жидкого этана и этилена
криогенные шаровые резервуары, работающие под избыточным давлением, для хранения жидкого этана и этилена (емкости металлические для сжатых или сжиженных газов)
25.29.12
шаровые резервуары, изготовленные из углеродистых низколегированных марок сталей (SA537 Cl2) и коррозионно-стойких ферритных сталей с содержанием никеля до 9 процентов (сталей SA-203 Gr), а также отечественных аналогов - железо-никелевых сплавов (OH6 и OH9) в средах жидкого этана и жидкого этилена в режимах самоохлаждения сжиженного газа до температур минус 89 градусов Цельсия для этана и минус 104 градусов Цельсия для этилена
1 июля 2050 г.
да
обязательно
в Российской Федерации по состоянию на сегодняшний день отсутствует нормативная база по проектированию и сооружения производств и парков хранения сжиженного этана и этилена. Сооружения подобных объектов ведутся по индивидуальным проектным решения и специальным техническим условиям. Проекты, реализованные ранее по строительству парков хранения жидкого этана и этилена на территории Российской Федерации, реализовывались с применением дорогостоящих аустенитных материалов. Рынок производства этана и этилена находится на стадии формирования. В связи с чем уровень потенциала развития технологии оценен как высокий
3
31.
Технология индукционного отжига полуфабрикатов гильзы патронов стрелкового оружия на автоматических роторных линиях моделей М-ЛГ-1 и М-ЛГ-4 без применения специализированных преобразователей ТПЧ-20 и ТПЧ-63
патроны и боеприпасы прочие и их детали
25.40.13.190
требования к технологии: сокращение затрат на восстановление и ремонт индукторов с магнитопроводом из электротехнической стали и ликвидацию операции лакирования индукторов и трудоемкого процесса сушки индукторов;
снижение расходов на электроэнергию
1 июня 2030 г.
да
обязательно
возможность применения транзисторного генератора серийного производства с программным обеспечением даст возможность снизить затраты на восстановление и ремонт индукторов с магнитопроводом из электротехнической стали и ликвидацию вредной для здоровья операции лакирования индукторов и трудоемкого процесса сушки индукторов. Также существенно снизит расходы на электроэнергию за счет конструктивной особенности транзисторных генераторов
2
32.
Технология изготовления режущего инструмента из новых материалов на основе твердых сплавов с уменьшенным содержанием карбида вольфрама или его отсутствием при введении в состав боридов и карбидов тугоплавких металлов, включающая нанесение на инструмент сложных многослойных наноструктурированных сверхтвердых покрытий
инструменты рабочие сменные для станков или для ручного инструмента (с механическим приводом или без него)
25.73.40
металлорежущий инструмент, выпускаемый с применением рассматриваемой современной технологии будет иметь следующие эксплуатационные характеристики (на примере пластины CNMG 120412 с покрытием): группа резания ISO P:
V = 220 м/мин;
S = 0,2 мм/об;
ar = 1,5 мм;
время работы 40 минут;
износ по задней поверхности 0,25 мм;
группа резания ISO M:
V = 180 м/мин;
S = 0,2 мм/об;
ar = 1,5 мм;
время работы 40 минут;
износ по задней поверхности 0,3 мм;
группа резания ISO К:
V = 250 м/мин,
S = 0,15 мм/об,
ar = 1,5 мм;
время работы 40 минут;
износ по задней поверхности 0,3 мм;
высокие уровень эксплуатационных характеристик продукции обеспечивается высоким уровнем физико-механических характеристик применяемых инструментальных материалов, которые также планируются к разработке. свойства: марка сплава V1:
плотность 6,3 - 6,7 г/см3;
твердость 92,5 - 93,0;
HRA или HV 16,5 - 17,0 ГПа, трещиностойкость 7,0 - 7,5 МПа x м^(), прочность при изгибе 2100 - 2300 Мпа;
марка сплава V2:
плотность 6,5 - 7,0 г/см3;
твердость 92,0 - 92,5;
HRA или HV 15,0 - 15,5 Гпа;
трещиностойкость 8,5 - 9,0 МПа x м^();
прочность при изгибе 2400 - 2600 Мпа;
31 декабря 2034 г.
да
неприменимо
технология изготовления режущего инструмента для тяжелого точения и обработки труднообрабатываемых материалов основанная на применении твердых сплавов с уменьшенным содержанием карбида вольфрама и без него, а также применения специальных сложных многослойных наноструктурированных сверхтвердых покрытий. Технология ввиду новизны обозначенных подходов имеет значительный потенциал развития ввиду следующих факторов: дефицитность и дороговизна порошков карбида вольфрама для производства инструмента;
заканчивающийся потенциал развития инструментальных твердых сплавов на основе карбида вольфрама (необходимо создание новых сплавов с перспективными свойствами с минимальным содержанием данного соединения);
необходимость дальнейшего повышения производительности и эффективности операций механической обработки в области тяжелого точения и обработки труднообрабатываемых материалов применение многослойных покрытий с более высокими эксплуатационными характеристиками (износостойкость, прочность, антифрикционные свойства);
необходимость обеспечения технологической безопасности механообрабатывающих
1
разрабатываемая современная технология будет включать в себя следующие стадии: синтез ключевых порошковых компонентов;
подготовка порошковой смеси (смешение и помол);
грануляция;
прессование заготовок на автоматическом прессе;
вакуумно-компрессионное спекание;
финишная обработка;
нанесение покрытия (в зависимости от области применения);
достичь высокого уровня физико-механических характеристик возможно за счет использования высококачественных субмикронных исходных порошков, а также применения современных технологий формования и спекания твердых сплавов
производств России от ограничений импортных поставок режущего инструмента. Создавшаяся в станкоинструментальной промышленности России ситуации с зависимостью российского машиностроения от импортного инструмента, требует для обеспечения технологической безопасности создание отечественного производства режущего инструмента мирового уровня на базе отечественных технологий. Динамика развития рынка инструмента в последние годы связана с развитием предприятий обороно-промышленного комплекса в рамках задач по перевооружению армии.
В рамках этого процесса значительная доля машиностроительных предприятий России провела обновление станочного парка и сформировала потребность в современном высококачественном отечественном режущем инструменте. Также стабильное развитие спроса на рынке инструмента обеспечивают предприятия топливно-энергетического комплекса и транспортного машиностроения
33.
Технология производства твердосплавной продукции
инструменты рабочие сменные для станков или для ручного инструмента (с механическим приводом или без него)
25.73.40
продукция, выполненная по данной современной технологии, должна соответствовать следующим параметрам:
процентное содержание кобальта - 8 - 15 процентов;
предел прочности при изгибе, - 1960 Н/мм2;
плотность 14.1 - 14.4 г/см3;
твердость HRА - не менее 86;
предельные отклонения линейных размеров - менее 2 процентов (размер изделий более 18 мм);
предельные отклонения линейных размеров - менее 3 процентов (размер изделий 10 - 18 мм);
предельные отклонения линейных размеров - менее 5 процентов (размер изделий менее 10 мм);
предельные отклонения угловых размеров - менее 1 градуса (для углов менее 10 градусов и более 90 градусов);
предельные отклонения угловых размеров - менее 2 градусов (для углов свыше 10 градусов и менее 90 градусов);
глубина рисок и вмятин - не более 0.2 мм;
размеры выкрашиваний на режущих кромках - не более 0.2 мм;
ширина или высота заусенцев на режущих кромках - не более 0.3 мм;
продукция должна соответствовать требованиям нормативной документации:
ГОСТ 19042-80, ИСО 1832-85 "Пластины сменные многогранные. Классификация. Система обозначений";
ISO 9001-200, API Q1;
ГОСТ 3882-75 "Сплавы твердые спеченные";
ГОСТ 4411-79 "Изделия твердосплавные для горного инструмента";
ГОСТ 880-75 "Изделия твердосплавные для горного инструмента. Формы и размеры", ТУ 48-42-44-2002
5 июня 2030 г.
да
обязательно
потенциал в области возможного развития производства высококачественной твердосплавной продукции по ресурсосберегающей технологии
2
34.
Технология производства двухслойных алмазно-твердосплавных пластин для высоко-эффективного инструмента, используемого при добыче нефти, газа и дорожном строительстве
алмазно-твердосплавные пластины, используемые в качестве режущих элементов в высокоэффективном инструменте (резцы минералокерамические)
25.73.40.273
основные технические характеристики алмазно-твердосплавных пластин:
диаметр от 13,44 до 25,00 мм;
высота от 4,5 до 8,03 мм;
толщина алмазного слоя: 1 - 2 мм;
категория буримости пород: 4 - 12;
твердость от 70 до 80 ГПа;
прочность на сжатие - 1,3 - 1,4 ГПа;
прочность на изгиб - 1,25 - 1,3 ГПа;
трещиностойкость - 5,0 - 5,8;
износостойкость - 0,22 - 0,3 мг/кг;
требования к технологии:
спекание заготовки алмазно-твердосплавных пластин при давлении 4,5 - 7 ГПа и температуре 1400 - 16000 градусов Цельсия;
механическая обработка заготовки алмазно-твердосплавных пластин;
контроль потребительских характеристик полученной алмазно-твердосплавных пластин
31 декабря 2050 г.
да
обязательно
потенциал развития предлагаемой современной технологии высокий и обуславливается: отсутствием промышленного производства алмазно-твердосплавных пластин в Российской Федерации;
монополизацией рынка со стороны транснациональных корпораций;
введением экономических санкций против Российской Федерации и некачественным импортом из третьих стран;
угрозой технологической и оборонной безопасности страны. Алмазно-твердосплавные пластины также могут быть использованы для различных режущих инструментов:
оснащения пил по природному камню (граниту, мрамору), бетону, железобетону, древесным плитам, керамике и пластмассам, изготовления напайных и неперетачиваемых пластин лезвийных инструментов, применяемых при обработке цветных металлов, сплавов и неметаллических материалов, а также фрез для горно-проходческих машин и дорожно-строительной техники
2
35.
Технология упрочнения поверхностей деталей методом микродугового оксидирования
изделия металлические прочие
25.99.2
в результате внедрения технологии будут достигнуты следующие технические параметры продукции:
износостойкость поверхностей увеличится не менее, чем в 2 раза по сравнению с поверхностями из стали и чугуна без специальных покрытий;
масса деталей снизится не менее, чем в 3 раза за счет замены деталей из стали и чугуна на детали из алюминиевых сплавов;
коррозионная стойкость деталей увеличится не менее, чем в 1,5 раза (в зависимости от алюминиевого сплава увеличение коррозионной стойкости составит 1,5 - 34,0 раза);
микротвердость поверхности увеличится в 3 - 14 раз;
увеличится тепловая защита поверхности, так как покрытие имеет коэффициент теплопроводности от 0,5 до 6,0 Вт/(м x К) в зависимости процесса микродугового оксидирования, технические характеристики:
детали должны испытывать воздействие значительных механических нагрузок (детали узлов трения медицинских роботов, функционирующие без смазочного материала и испытывающие воздействия сил трения, вызывающих их износ, детали экзоскелетов, детали двигателей);
детали продукции должны быть изготовлены из легких сплавов вентильных металлов:
алюминиевых, титановых или магниевых или иметь возможность замены основного материала (стали) на вышеприведенные сплавы, за счет чего снизится вес оборудования, что особенно актуально и для медицинских роботов, и для экзоскелетов, а также для авиадвигателестроения
3 июня 2030 г.
да
обязательно
разработанные по данной технологии покрытия обеспечивают долговременную защиту деталей из алюминиевых, магниевых и титановых сплавов от износа, коррозии, эрозии и теплового воздействия. Покрытие имеет высокую адгезию к поверхности даже при высоких нагрузках. Позволяет увеличить долговечность деталей в 2 - 4 раза даже при функционировании без смазочного материала. Внедрение технологии позволит увеличить долговечность и надежность работы устройств и оборудования при одновременном снижении их массы
2
36.
Технология производства чипов для силовой электроники на базе кремния
диоды и транзисторы
26.11.2
технические характеристики: мощные высоковольтные биполярные транзисторы с изолированным затвором типа IGBT, изготавливаемые по Trench технологии затвора и Field-Stop исполнении коллекторных слоев с номинальными токами IC nom от 50 до 200 А, а так же номинальными напряжениями VCE nom - 1200 и 1700 В;
параллельные диоды с мягкой характеристикой обратного восстановления с номинальными токами IF от 50 до 200 А и номинальными напряжениями VR nom - 1200 и 1700 В
1 января 2040 г.
да
неприменимо
конкуренцию на рынке силовых полупроводниковых приборов можно охарактеризовать как умеренную. Появление новых участников рынка ограничено высоким уровнем начальных инвестиций как в оборудование, так и в НИОКР. Кроме того, следует отметить низкий риск смены поставщиков в рамках отдельно взятого предприятия, поскольку испытания продукции новых производителей могут составлять до 1,5 лет. Тенденции технологического развития отрасли задают современные силовые полупроводниковые приборы типа IGBT и SiC MOSFEET. В настоящий момент лишь несколько компаний в мире освоили технологию производства чипов силовой электроники, они же являются мировыми лидерами отрасли. В отечественной силовой электронике есть несколько компаний владеющей технологией производства биполярных приборов и IGBT транзисторов. При этом IGBT транзисторы производятся с использованием чипов зарубежного производства. Это ключевой момент, так как стоимость чипа, как правило определяет более 50 процентов конечной цены изделия. В тоже время лидеры отрасли, одновременно являются производителями самих чипов, силовых полупроводниковых приборов и преобразовательной техники. В совокупности вышеуказанные компании занимают более 50 процентов мирового рынка силовой электроники. Тем самым они формируют конструкторские и технологические решения, на которые ориентируются другие участники рынка. Освоение данной технологии производства в России позволило бы снизить зависимость отечественной электроники от иностранных производителей, овладеть новыми компетенциями, расширить номенклатуру производимых силовых полупроводников приборов. Освоение trench технологии производства силовых полупроводниковых приборов на основе кремния на пластинах 200 мм позволит в дальнейшем освоить серийное производство кристаллов силовых полупроводниковых приборов, с характеристиками значительно превышающими заявленные, а также освоить производство других типов силовых полупроводниковых приборов
1
37.
Технология производства мощных лазерных диодов ближнего инфрокрасного диапазона (900 - 1060 нм) на основе полупроводниковых гетероструктур
диоды лазерные (полупроводниковые лазеры)
26.11.22.130
технические характеристики:
спектр излучения разрабатываемых лазерных модулей должен соответствовать длинам волн 915, 976, 980 и 1060 нм;
мощность излучения для одномодовых лазерных диодов должна превышать 200 мВт, для многомодовых - 10 Вт
1 января 2025 г.
да
обязательно
разработанная технология позволит создать полностью отечественные лазерные установки для прецизионной обработки материалов (резки, сварки, гравировки, спекании и прочего), медицинские аппараты для лазерной хирургии и офтальмологии, систем межспутникового информационного обмена и магистральных линий оптической связи
2
38.
Технология сборки силовых модулей IGBT паяной конструкции
приборы полупроводниковые прочие
26.11.22.190
требования к основным техническим характеристикам:
напряжение от 1700 В до 6500 В;
ток от 600 А до 1800 А
1 января 2030 г.
да
обязательно
применение современных технологий преобразования электроэнергии посредством силовой полупроводниковой электроники позволяет: обеспечивать необходимое количество и качество электроэнергии;
снизить потери при ее генерации, транспортировке и потреблении;
увеличить надежность электроснабжения и коэффициент полезной деятельности электротехнических устройств;
улучшить экологию окружающей среды. В свою очередь, реализация проекта по сборке IGBT модулей позволит решит ряд актуальных задач, стоящих перед силовой электроникой:
повышение ресурса работы преобразователей;
повышение климатической стойкости и надежности;
снижение себестоимости и стоимости жизненного цикла (стоимости владения);
повышение удельной мощности преобразователей;
снижение массогабаритных показателей;
повышение коэффициент полезной деятельности преобразователей электроэнергии
3
39.
Технология производства фотонных интегральных схем
фотонные интегральные схемы (схемы интегральные электронные)
26.11.3
основные параметры технологии: используемые материалы:
кремний, кремний на изоляторе, фосфид индия;
размер пластин - 150 - 200 мм;
технологическая норма: 500 нм. Промышленная продукция производится с использованием полупроводниковых технологий
1 января 2030 г.
да
неприменимо
технология позволит перейти на новый технологический уклад. Ведутся исследования разработки в указанном направлении, сформирована программа по развитию, имеет стратегическое значение в среднесрочной перспективе
1
40.
Технология производства стеклокерамических подложек для электронной техники
подложки ситалловые для электронной техники (части прочих электронных компонентов, не включенные в другие группировки)
26.11.40.190
технические характеристики: шероховатость рабочей поверхности - не менее 0,032 мкм.;
шероховатость не рабочей поверхности - не менее 4 мкм.;
плотность СТ-50-1 ситалловой подложки - от 2,6 г/см3 до 2,7 см3;
микротвердость - 705 кгс/мм2;
термостойкость - +210 градусов Цельсия;
диэлектрическая проницаемость при частоте 1 МГц - от 8 до 9;
тангенс угла диэлектрических потерь при частоте 1 МГц - не более 15;
удельное объемное электрическое сопротивление при температуре + 100 градусов Цельсия - 1014 Ом·см;
температурный коэффициент линейного расширения Альфа- 107 К-1 в интервале температур от +20 до +300 градусов Цельсия;
электрическая прочность СТ-50-1 - 47 кВ/мм;
теплопроводность - 1,4 Вт/м·К;
габаритные размеры - 60 x 48 x 0,6 мм
31 декабря 2030 г.
да
неприменимо
потенциал развития заключается в создании высокотехнологичного производства с использованием сверхвысокочастной обработки, лазерной резки заготовок и ультразвуковой очистки поверхности. Ситалловые подложки СТ-50-1 применяются в радиоэлектронной промышленности, военно-промышленном комплексе, самолетостроении, судостроении и других отраслях электронной промышленности
1
41.
Технологии изготовления интегрально-оптических компонентов для управления распространением оптического сигнала, его преобразования и обработки
компоненты электронные
26.11
технические характеристики:
малые габариты (1 см2) и размер за счет интеграции всех оптических элементов на одном кристалле;
высокое быстродействие - (1 ГГц и более при проведении отдельных опытно-контрукторских работ);
помехоустойчивость;
взрывобезопасность;
количество оптических входов/выходов от 1 до 12 (максимальное количество - 24);
требования к технологии: производство с помощью методов фотолитографии (с разрешением 1 мкм);
электронно-лучевой литографии (с разрешением 10 нм);
напыления;
плазмо-химического травления материалов и прочих технологий формирования интегральных схем
1 января 2050 г.
да
неприменимо
технологии изготовления интегрально-оптических компонентов в мире находятся на начальной стадии развития. В ближайшие 10 - 20 лет она будет продолжать развиваться, что приведет к интеграции на одном кристалле электрических и оптических элементов с возможностью существенного увеличения скорости и объемов передачи и обработки данных
1
42.
Технология автоматизации и роботизации горнодобывающей, строительной и специальной техники
компьютеры, их части и принадлежности
26.20.1
требования к эксплуатации и техническому обслуживанию конструкции оборудования мобильных объектов:
для оборудования, установленного на открытом воздухе: пониженная рабочая температура -40 градусов Цельсия;
повышенная рабочая температура - +60 градусов Цельсия;
относительная влажность воздуха: 98 процентов;
для оборудования, установленного в кабине машин:
пониженная рабочая температура - 0 градусов Цельсия (при хранении - 40 градусов Цельсия);
повышенная рабочая температура - +70 градусов Цельсия;
относительная влажность воздуха - 90 процентов;
оборудование, установленное на мобильных объектах, безотказно функционирует при непрерывной круглосуточной и круглогодичной эксплуатации в условиях высокой запыленности и выдерживает значительную вибрацию (тряску).
Для всех компонентов предусмотрена возможность их быстрого демонтажа и замены в случае экстренной необходимости, в аппаратных средствах исключено самопроизвольное включение оборудования автономного и дистанционного управления и включение навесного и дополнительного оборудования во всех случаях его применения в соответствии с руководством по эксплуатации, в том числе при включении-выключении, а также при работе в условиях промышленных и атмосферных радиопомех;
31 декабря 2030 г.
да
обязательно
в развитых странах роботы уже широко внедрены во множество отраслей - от автомобилестроения до химической промышленности, однако некоторые отрасли пока еще не получили массового внедрения роботов в силу технологических сложностей или в силу того, что спрос на услуги в этих отраслях только появился. Это создает значительный потенциал для разработки, внедрения и экспорта робототехнических решений для добывающей промышленности, сельского хозяйства, атомной энергетики, авиа- и судостроения. Именно эти отрасли также являются наиболее конкурентоспособными отраслями народного хозяйства России
2
безопасность электрооборудования:
все входные и выходные сигналы защищены от коротких замыканий на положительный и отрицательный провода питания;
электропроводка прочно закреплена для исключения возможности ее обрыва, перетирания, проливов воды и от атмосферных осадков;
аппаратная часть и электромонтажные работы: аппаратное обеспечение мобильных комплексов выполнено в прочных корпусах, способных выдерживать удары, тряску (низкочастотную вибрацию большой амплитуды) и экстремальные климатические условия данной местности;
электросоединители в герметическом исполнении, их кабельные части должны быть заполнены герметиком или компаундом;
провода (электрожгуты) и кабели защищены от непреднамеренных повреждений и смонтированы с применением петли снижения перед местом соединения с блочной частью разъема во избежание проникновения атмосферной влаги и конденсата в разъемы вдоль поверхности проводов;
нет неизолированных участков внешнего электромонтажа
43.
Технология беспилотного управления и эксплуатации карьерными самосвалами
программно-аппаратный комплекс обеспечения в реальном времени управление карьерным самосвалом в беспилотном режиме и мониторинг его технического состояния (компьютеры, их части и принадлежности)
26.20.1
роботизированный комплекс должен обеспечивать следующие режимы управления карьерным самосвалом:
автономный режим управления:
в автономном режиме управления роботизированный комплекс должен обеспечивать движение по маршруту и выполнение технологических операций, таких как: движение по заданному маршруту;
погрузка;
разгрузка;
в дистанционном режиме управления: дистанционное управление движением и технологическими операциями карьерного самосвала должно осуществляться оператором из рабочего места оператора по беспроводному каналу передачи данных;
в ручном режиме управления: движение и выполнение технологических операций должно осуществляться непосредственно водителем из кабины карьерного самосвала, для организации работы роботизированного карьерного самосвала на участке необходима установка дополнительной инфраструктуры, которая включает в себя: оборудование передачи данных (Wi-Fi/LTE/5G + LAN);
шлагбаумы и светофоры на местах въезда/выезда на участок;
стационарные видеокамеры;
серверное оборудование;
рабочие места пользователей;
требования к основным техническим параметрам роботизированного комплекса: протокол управления КС - CAN;
31 декабря 2030 г.
да
обязательно
потенциал развития технологии в переходе на новые принципы организации работы угледобывающей промышленности
3
оборудование сканирования окружения (лазерные сканеры, радары, ультразвуковые датчики, оборудование видеонаблюдения);
оборудование передачи данных: (стандарт 802.11 b/g/n MESH;
диапазон частот, ГГЦ - 2400 - 2,483);
оборудование экстренной остановки (частота канала аварийной остановки, МГц - 433,92 0,2 процента). диапазон рабочей температуры эксплуатации, от минус 40 до плюс 50 градусов Цельсия;
влажность - 95 процентов;
энергообеспечение бортовая сеть - 24 В;
потребляемая мощность, Вт, макс - 1500
44.
Технология поверхностного монтаж чип-компонентов на печатную плату и изготовления печатных плат;
машины вычислительные электронные цифровые, содержащие в одном корпусе центральный процессор и устройство ввода и вывода, объединенные или нет для автоматической обработки данных
26.20.13
технические характеристики: соответствие требованиям, установленным в техническом регламенте Таможенного союза "О безопасности колесных транспортных средств" (ТР ТС 018/2011) для данного вида продукции (при наличии);
соответствие продукции постановлению Правительства Российской Федерации от 20 сентября 2017 г. N 1135 "Об отнесении продукции к промышленной продукции, не имеющей произведенных в Российской Федерации аналогов, и внесении изменений в некоторые акты Правительства Российской Федерации";
соответствие ГОСТ Р ИСО/ТУ 16949-2009 "Системы менеджмента качества. Особые требования по применению ИСО 9001:2008 в автомобильной промышленности и организациях, производящих соответствующие запасные части" и ГОСТ Р 58139-2018 "Системы менеджмента качества. Требования к организациям автомобильной промышленности";
обязательное выполнение всех требований, установленных в разделе II. "Продукция автомобилестроения" приложения к Постановлению Правительства Российской Федерации от 17 июля 2015 г. N 719 "О подтверждении производства промышленной продукции на территории Российской Федерации" для соответствующих компонентов;
соответствие ГОСТ Р 55490-2013 "Платы печатные. Общие технические требования к изготовлению и приемке";
ГОСТ 23752-79 "Платы печатные. Общие технические условия";
ГОСТ Р53429-2009 "Платы печатные. Основные параметры конструкции";
ТРС-2221;
IPC-7351A;
lPC-SM-782A;
ОСТ 4.42.02-93
31 декабря 2025 г.
да
обязательно
данная технология позволяет производить продукцию для перспективных автомобилей. Позволяет оптимизировать производительность за счет выполнения механической работы на современных станках, а также улучшить качество продукции. С каждым годом количество электронных компонентов в автомобиле возрастает, что подчеркивает развитие данной технологии
3
45.
Технология мониторинга и контроля процессов заготовки, транспортировки и хранения термолабильных компонентов крови (холодовой цепи) на основе автоматизированной информационно-аналитической системы и устройств радиочастотной идентификации
программно-аппаратный комплекс мониторинга и контроля процессов заготовки, транспортировки и хранения термолабильных компонентов крови (машины вычислительные электронные цифровые, поставляемые в виде систем для автоматической обработки данных)
26.20.14.000
состав программно-аппаратного комплекса: программное обеспечение (комплект программ);
программируемые радиочастотные метки (f-10,36 МГц), размещаемые на контейнерах с компонентами крови;
комплект устройств записи информации на метки радиочистотной индефикации;
комплект устройств считывания меток радиочистотной индефикации
1 января 2050 г.
да
неприменимо
дальнейшее совершенствование и развитие цифровой технология мониторинга и контроля процессов заготовки, транспортировки и хранения термолабильных компонентов крови возможно за счет разработки программного модуля экспертной оценки качества компонентов крови на основе искусственного интеллекта на этапе их применения в медицинской практике
1
46.
Технология производства периферийного печатающего и многофункционального печатающе-сканирующего оборудования для информационно-вычислительной техники и систем, в том числе, с использованием отечественной электронной компонентной базы
устройства периферийные с двумя или более функциями: печать данных, копирование, сканирование, прием и передача факсимильных сообщений
26.20.18
крупносерийное производство изделий с применением автоматических, роботизированных производственных комплексов, систем прослеживаемости и цифровым управлением высокотехнологичным производством. Основные технические характеристики продукции: технология печати - лазерная;
тип печати - монохромный/цветной;
скорость печати - для монохромного типа печати 30 - 35, 35 - 50 страниц в минуту;
скорость печати для цветного типа печати 18 - 33 страниц в минуту;
крупносерийное производство изделий с использованием высокотехнологичного производства в чистых помещениях;
характеристики: тип развертки - вращающаяся призма;
размер пятна лазерного луча - не более 50 мкм;
количество точек на линию - не менее 5000;
уровень шума - не выше 60 дБА;
характеристики крупносерийного производства изделий с использованием высокотехнологичного производства продукции с применением литья пластиковых деталей, их последующей сборки и регулировки:
тип сканирующего устройства - планшетный, протяжной;
разрешение не хуже 600 x 600 точек/дюйм;
скорость сканирования не менее 20 стр./мин
31 декабря 2030 г.
да
обязательно
внедряемая технология создает базовый технологический задел для производства указанного типа промышленного оборудования, имеющий следующие возможности по совершенствованию и поддержанию актуальности: снижение себестоимости выпускаемой продукции за счет расширения роботизации технологических процессов;
снижение доли иностранных комплектующих при производстве продукции за счет применения электронной компонентной базы, производимой на территории Российской Федерации;
улучшение потребительских свойств выпускаемой продукции (скорость печати, время выхода первой страницы) за счет модернизации имеющегося аппаратного и программного обеспечения;
расширение ассортимента выпускаемой продукции и поддержание ее конкурентоспособности за счет освоения в производстве перспективных моделей устройств. Внедрение данной технологии позволит увеличить выпуск продукции, обеспечит снижение ее себестоимости, а значит и повышение конкурентоспособности с аналогичной импортной продукцией. Внедрение данной технологии позволит вносить
2
модификации и модернизации во встроенное программное обеспечение оборудования, тем самым повышая уровень его информационной безопасности и конкуренто-способности над аналогичной импортной продукцией. Внедрение данной технологии позволит вносить модификации и модернизации в системное програмное обеспечение и драйверы оборудования, тем самым обеспечивая его совместимость с отечественными операционными системами, а также повышая уровень информационной безопасности и конкурентоспособности над аналогичной импортной продукцией. Внедряемая технология создает базовый технологический задел для производства одного из наиболее критичного компонента лазерных печатающих устройств и обеспечивает следующие возможности по совершенствованию и поддержанию актуальности:
снижение доли иностранных комплектующих при производстве конечной продукции за счет применения компонентов, производимых на территории Российской Федерации;
возможность освоения на развернутом производстве перспективных моделей устройства, обеспечивающих повышение потребительских характеристик конечной продукции
47.
Технология создания быстродействующих схем обработки информации (в т.ч., суперкомпьютеров)
устройства автоматической обработки данных прочие
26.20.30
интегрально-оптические схемы обработки информации должны обеспечивать: быстродействие обработки информации до 1012 - 1014 оп/сек;
возможность реализации на основе интегрально-оптических технологий;
низкую стоимость изготовления и эксплуатации;
высокую стойкость к воздействиям различной физической природы;
высокую ресурсоэффективность и энергоэффективность
1 января 2020 г.
да
обязательно
дальнейшее развитие данной технологии для повышения точности и быстродействия схем обработки информации (в т.ч., для создания суперкомпьютеров) обеспечат схемы обработки информации, планируемые на основе современных технологий только к 2045 году
2
48.
Технология автоматизации работы буровых установок
аппаратно-программный комплекс управления работой буровых установок
26.30.1
требования к техническим характеристикам комплекса: частота канала аварийной остановки - 433,92 МГц ( 0,2 процента);
оборудование видеонаблюдения (цифровые видеокамеры, оборудование сканирования окружения, 3D лидары, 2D лидары, радары, ультразвуковые датчики);
бортовое оборудование;
базовое оборудование и оборудование рабочего места оператора: бортовая сеть 24 В;
сеть 220 В 50 Гц;
условия эксплуатации внешнего оборудования:
диапазон рабочей температуры эксплуатации - от минус 40 до плюс 60 градусов Цельсия;
влажность - 98 процентов;
условия эксплуатации оборудования в кабине:
диапазон рабочей температуры эксплуатации, от минус 40 до плюс 70 градусов Цельсия;
влажность - 90 процентов;
автоматизированная система управления буровым станком совместно с удаленным местом оператора и системой диспетчеризацией должна обеспечивать полностью автономное (без участия человека) выполнение буровым станком технологических задач, включая: автономное выполнение буровым станком основного технологического цикла работы;
9 февраля 2050 г.
да
обязательно
потенциал развития: полная замена существующей системы работы. Переход на качественно новый уровень технологии в горнопромышленном комплексе
3
дистанционное управление буровым станком;
применительно к условиям эксплуатации бурового станка эти функции можно детализировать следующим образом: автономное движение, включая движение скважины и перегон;
автономное наведение на скважину и горизонтирование;
автономное бурение, включая контроль параметров бурения;
дистанционное управление из рабочего места оператора
49.
Технология беспилотного управления двумя и более транспортными средствами на основе системы "следуй за мной"
аппаратура коммуникационная, аппаратура радио- или телевизионная передающая;
телевизионные камеры
26.30.1
технические характеристики: диапазон скоростей в процессе эксплуатации режима от 0 до 210 км/ч;
диапазон удаления включенных в колонну единиц в процессе функционирования режима от 0,1 - 100 м;
всепогодная эксплуатация без ограничений по времени суток;
отсутствие ограничений по рельефу местности
31 декабря 2030 г.
да
неприменимо
технология позволит обеспечить безопасное использование сочетания пилотируемых и беспилотных транспортных средств в составе автоматизированной колонны коммерческих автомобилей в соответствии с перспективными требованиям к 5 классу автономности, с обеспечением минимальных задержек передачи управляющих сигналов и ответной реакции органов управления автомобилей в колонне. Производственные процессы должны обеспечить необходимый уровень качества изготовления и сборки компонентов и готовых изделий и их надежности
1
50.
Технология комплексной разработки и производства радиомодулей систем связи 5G с технологией гибридного диаграммообразования на базе радиофотонных технологий
радиомодули систем связи 5G (части и комплектующие коммуникационного оборудования)
26.30.3
технические характеристики: рабочий диапазон частот: 24 - 29,5 ГГц (n257, n258, n260);
антенная система должна работать по технологии "Massive MIMO" и иметь от 128 до 256 элементов;
технология образования луча: гибридная (аналогово-цифровая);
максимальная ширина полосы: до 400 МГц;
пропускная способность: 2,5 - 5.0 Гбит/с на абонента;
интерфейсы Radio over Ethernet (RoE);
стандарты: 3GPP NR rel.15, O-RAN v2.0;
массогабаритные показатели, допускающие размещение внутри зданий и в условиях сложной городской застройки;
схемотехнические решения диаграммообразования должны быть выполнены с применением фотонных (радиофотонных) интегральных схем;
конструктивно-технологические решения, принятые при разработке и освоении должны быть основаны на применении технологий радиофотоники.
1 июня 2030 г.
да
неприменимо
технология имеет прорывной характер и позволяет обеспечить создание устойчивой и безопасной информационно-телекоммуникационной инфраструктуры высокоскоростной передачи, обработки и хранения больших объемов данных, доступной для всех организаций и домохозяйств. С точки зрения технологических задач, решение которых отмечается в дорожной карте развития технологий беспроводной связи как наиболее приоритетное, разработка отечественных решений сети радиодоступа (антенн, радио модулей и прочего) выделена в группу задач, представляющих первый приоритет в развитии технологий связи
1
51.
Технология производства тонкопленочных антенн
антенны и антенные отражатели всех видов и их части;
части передающей радио- и телевизионной аппаратуры и телевизионных камер
26.30.4
изделия, предназначенные для приема и передачи радиосигналов в диапазонах 220 - 3500 МГц;
антенны обеспечивают приемлемый уровень согласования с различными фидерными линиями волновым сопротивлением 50 и (или) 75 Ом;
токоведущими элементами изделий являются напыленные элементы из серебросодержащей пасты толщиной 7 - 30 мкм, соединенные с материалом подложки методом термоспекания;
в качестве материала подложки используется полиамидные пленки толщиной 0,1 - 1 мм;
нанесение токоведущих элементов производится методом шелкографии
1 января 2030 г.
да
обязательно
при успешном осуществлении первого этапа возможно применение данной технологии для нанесения токопроводящих слоев на различные поверхности (автомобильная, авиационная промышленность, домостроение). Производство антенн по тонкопленочной технологии возможно применить в "Интернете вещей" (IoT), включенных в большие экосистемы. В связи с вышеизложенным, потенциал оценивается как весьма высокий
3
52.
Технология использования искусственного интеллекта для дистанционного определения температуры тела человека и его идентификации с использованием двухдиапазонной видеокамеры
видеокамеры для записи и прочая аппаратура для записи или воспроизведения изображения
26.40.33
требования к техническим характеристикам промышленной продукции:
двойное изображение (1 тепловой и 1 оптический канал);
опция "картинка в картинке" (накладывает часть изображения из теплового канала на оптическое изображение);
аудиосвязь и тревожные входы/выходы;
широкоугольный объектив с фокусным расстоянием 10 мм на тепловом модуле;
объектив с фиксированным фокусным расстоянием 4 мм на оптическом модуле;
форматы видеокомпрессии - H.265, H.264 и MJPEG;
видимый диапазон с ИИ: 1/2.8" КМОП, 1920 x 1080, FOV56° x 32°
3 июня 2035 г.
Да
обязательно
технология может получить широкое применение в связи с возможностью автоматического выявления лиц, попадающих в группу риска для последующей проверки инфицирования COVID19
2
53.
Технологии высокоточного навигационного мониторинга пространственного положения беспилотного летательного аппарата
приборы навигационные, метеорологические, геофизические и аналогичные инструменты
26.51.1
технические характеристики: высокоточный устойчивый мониторинг пространственного положения беспилотного летательного аппарата при пропадании спутниковых сообщений до 10 мин.;
возможность реализации на основе технологии микроэлектромеханической системы;
низкая стоимость изготовления и эксплуатации;
максимальная ресурсоэффективность и энергоэффективность
31 декабря 2025 г.
да
обязательно
дальнейшее развитие данной технологии возможно в области повышения точности мониторинга пространственного положения беспилотного летательного аппарата до субметрового диапазона, что обеспечит ее применение в различных отраслях экономики, которые нуждаются в повышении эффективности работ, связанных с точным пространственным позиционированием используемых беспилотных летательных аппаратов. Так, использование технологии в лесном хозяйстве позволит сократить расход элитных семян при аэросеве до 30 процентов, что при ежегодных потерях лесных массивов, оцениваемых в 5,2 млн. га, обеспечит сокращение затрат на лесовосстановление до 80 - 100 млрд. руб./год
3
54.
Технология производства измерителя дистанций для подвижных составов
дальномеры, теодолиты и тахиметры (тахеометры)
26.51.12.110
требования к выпускаемой продукции: наличие канала, обеспечивающего 100 процентов вероятность обнаружения объектов и препятствий;
измерение дистанций динамических объектов;
точность измерений;
безопасность излучения для человека;
возможность работы в сложных метеоусловиях
31 декабря 2030 г.
да
обязательно
дальнейшая разработка модификаций продукта обеспечит выход на новые сегменты рынка: строительство, беспилотный транспорт, промышленность
2
55.
Технология высокоточного определения временных интервалов импульсного когерентного излучения в оптическом диапазоне
лазерная локационная система обеспечения безопасности полета в условиях ограниченной видимости
26.51.12
технические требования к продукции: максимальная дальность обнаружения препятствий - 1000 - 2000 м;
поле обзора - 40 x 30 градусов;
минимальное время обнаружения препятствий - 0,5 сек;
вероятность обнаружения особо опасных препятствий (провода, антенны) за 1 с - 99,5 процентов
5 июня 2040 г.
да
обязательно
потенциал развития данной технологии состоит в расширении спектра решаемых задач при помощи развития алгоритмов управления и обработки получаемой информации, совершенствования методов сканирования, повышение основных технических характеристик посредством модернизации и оптимизации аппаратной составляющей. Возможность создания мультифункциональных изделий. Имеется потенциал по развитию функционала и технических характеристик продукции в части изменения методов управления и обработки информации, а также использования различных методов сканирования, возможности гибкой подстройки функционала изделий под решение задач построения 3D карт местности
2
56.
Технология высокоточного определения временных интервалов импульсного когерентного излучения в оптическом диапазоне
геодезический лазерный сканер для построения трехмерной карты целевой местности
26.51.12
технические характеристики: разрешение угловых измерений, не более 1 мрад;
сектор сканирования не менее 60 градусов;
скорость сканирования не менее 25000 изм/с
1 января 2030 г.
да
обязательно
расширение спектра решаемых задач путем развития алгоритмов управления и обработки получаемой информации, совершенствования методов сканирования, повышение основных технических характеристик посредством модернизации и оптимизации аппаратной составляющей. Создание мультифункциональных изделий
2
57.
Технология проведения морских сейсморазведочных работ, сейсмомониторинга на шельфе и в транзитной зоне с использованием мобильного программно-аппаратного комплекса на базе автономной секционной донной сейсмокосы
мобильный программно-аппаратный комплекс на основе автономной секционной донной сейсмокосы
26.51.12
технические характеристики: возможность раскладки с маломерных неспециализированных судов;
автономность не менее 10 сут;
5-ти компонентный цифровой датчик 5С (2 гидрофона + 3 геофона);
малый диаметр и вес;
индивидуальное акустическое позиционирование каждого датчика
31 декабря 2030 г.
да
обязательно
совершенствование современной технологии морской 2D и 3D сейсморазведки и мониторинга месторождений углеводородов на шельфе за счет применения автономных секционных донных цифровых кабельных сейсмокос может быть в дальнейшем расширено до 4D сейсморазведки и мониторинга на шельфе, а также может использоваться для бесшовной сейсморазведки в транзитной зоне. Возможна роботизация процесса раскладки сейсмокосы и соответствующее снижение затрат на производство работ
2
58.
Технология сборки и монтажа всех элементов электронной компонентной базы на печатную плату (для печатных плат, содержащих в своем составе центральные процессоры)
аппаратура радионавигационная для работы в системе спутниковой навигации ГЛОНАСС или ГЛОНАСС/GPS
26.51.20.121
требования к выпускаемой продукции: соответствие требованиям, установленным в техническом регламенте Таможенного союза "О безопасности колесных транспортных средств" (ТР ТС 018/2011) для данного вида продукции (при наличии);
соответствие продукции постановлению Правительства Российской Федерации от 20 сентября 2017 г. N 1135 "Об отнесении продукции к промышленной продукции, не имеющей произведенных в Российской Федерации аналогов, и внесении изменений в некоторые акты Правительства Российской Федерации";
соответствие ГОСТ Р 58139-2018 "Системы менеджмента качества. Требования к организациям автомобильной промышленности";
обязательное выполнение всех требований, установленных в разделе "II. Продукция автомобилестроения" приложения к постановлению Правительства Российской Федерации от 17 июля 2015 г. N 719 "О подтверждении производства промышленной продукции на территории Российской Федерации" для соответствующих компонентов"
31 декабря 2025 г.
да
обязательно
современная технология имеет потенциал развития в части: мониторинга транспорта;
перехода на новые стандарты сотовой связи для увеличения пропускной способности (в том числе улучшение качества) канала передачи данных, высокоточной навигации
3
59.
Технология производства систем акустической диагностики гидротурбин и насосных агрегатов
Системы акустической диагностики и мониторинга гидротурбин и насосных агрегатов
26.51.66.121
системы акустической диагностики должны обеспечивать: повышение надежности работы оборудования за счет снижения вероятности аварийного отказа не менее, чем в 10 раз;
сокращение затрат на техническое обслуживание оборудования за счет выполнения работ по необходимости не менее, чем на 30 процентов
1 июня 2040 г.
да
неприменимо
развитие данной технологии позволит повысить достоверность полученных данных систем акустической диагностики гидротурбин и насосных агрегатов, а также расширить базу существующих дефектов
1
60.
Технологии автоматизированного управления газотурбинными установками
системы автоматизированного управления технологическим процессом газотурбинных установок
26.51.70.190
основными техническими характеристиками программно-технологических комплексов системы автоматизированного управления газотурбинными установками являются: наличие технических средств (контроллеры, модули ввода-вывода, активное сетевое оборудование, серверное и клиентское оборудование (серверы единого времени и т.д.);
программное обеспечение, обеспечивающее как исполнение, так и конфигурирование исполняемых программ, а также обеспечивающее интерфейс взаимодействия "человек-машина";
решения по организации сетевого обмена в контуре программно-технологических комплексов и на пограничных устройствах;
средства защиты информации, как штатные по отношению к программно-технологическим комплексам, так и внешние совместимые;
независимость как программных, так и аппаратных комплектующих от конъюнктуры иностранного рынка;
программно-технологический комплекс должен включать в себя аппаратные и программные средства только Российского производства, включая микропроцессор контроллера;
функциональная полнота как самого комплекса, так и вспомогательных инструментов отладки, диагностики и аналитики. продукт должен иметь современную архитектуру, поддерживающую создание распределенных систем ответственного управления
31 декабря 2030 г.
да
обязательно
соответствует долгосрочной потребности энергетики Российской Федерации в газотурбинных установках большой мощности и их сервисного обслуживания в период эксплуатации. Способствует обеспечению технологической независимости отечественной энергетики (удовлетворение долгосрочной потребности энергетики в отечественном программно-технологическом комплексе системы автоматизированного управления для газотурбинных установок большой мощности). Замена дорогостоящих импортных систем управления газовыми турбинами. Снижение рисков отказов в технической поддержке производителей и отсутствия необходимого парка запасных частей и комплектующих. Обеспечение безопасности энергетических объектов, как объектов критической информационной инфраструктуры
3
61.
Технология производства преобразователей частоты исполнительных механизмов различного типа
приборы автоматические регулирующие и контрольно-измерительные прочие
26.51.70.190
технология позволяет создать преобразователи частоты для регулируемых приводов различных типов мощностью до 250 кВт с функциями защиты привода и преобразователя в аварийных ситуациях, с функцией дистанционного управления и минимизацией оборудования по массогабаритным показателям
31 декабря 2030 г.
да
неприменимо
перспектива создания высокоэффективных исполнительных механизмов различных сфер применения
1
62.
Технология производства оборудования визуализации тканей для диагностики онкологических заболеваний и сторожевого лимфатического узла с использованием радиофармпрепаратов
аппараты, основанные на использовании рентгеновского, или альфа-, бета-, гамма-излучений, применяемые в медицинских целях
26.60.11
установка представляет собой два коллимированных твердотельных спектрометрических блока детектирования с лазерным 3D - сканером и видеокамерой, на экране видеокамеры будет видно изображение операционного поля с наложением контуров тканей, накопившей радиофармпрепарат;
в процессе создания данной системы будут производиться коллимированные твердотельные спектрометрические блоки детектирования, которые далее будут комбинироваться с 3D - сканерами и видеокамерами;
предлагаемый метод для визуализации основан на функциональном различии опухолевых и здоровых тканей;
дозовая нагрузка от внешнего облучения на персонал будет ниже, чем от рентгеновского излучения
31 декабря 2035 г.
да
необязательно, поскольку данная технология в полном объеме позволяет осуществить внедрение в серийное производство медицинских изделий, конкурентоспособных на мировом рынке, для реализации указанной конкурентоспособной продукции не потребуется создание производных результатов интеллектуальной деятельности
внедрение технологии производства системы визуализации тканей, меченных радиофармпрепаратами, для хирургического лечения онкологических заболеваний позволит производить отечественное, конкурентоспособное на мировом рынке, высокотехнологичное медицинское оборудование. Совершенствование технологии будет производиться с учетом запросов основных пользователей и требований онкологов-хирургов
2
63.
Технология бесконтактного манипулирования и микрохирургии эмбрионов на предимплантационной стадии развития
аппараты лазерной терапии
26.60.13.170
технические характеристики производимой продукции:
инвертированный микроскоп должен иметь как минимум два оптических порта - для заведения лазерного излучения и установки видеокамеры;
непрерывный лазер должен иметь длину волны 1060 +/- 50 нм и мощность не менее 1 Вт;
фемтосекундный лазер должен иметь длину волны 1100 +/- 100 нм с возможностью преобразования в излучение второй гармоники, с частотой следования импульсов от 100 до 2500 кГц, а энергию импульса не менее 1 мкДж на основной частоте (0.5 мкДж на частоте второй гармоники);
необходима возможность управления лазерными излучением (выдача пачки импульсов заданной длительности, начиная с одиночного импульса);
оптические элементы должны иметь диаметр от 25 до 50 мм, а линзы должны иметь просветление на длину волны лазерного излучения (коэффициент отражения от поверхности должен быть R > 0,5 процента), зеркала должны иметь R > 99,8 процентов;
диапазон перемещения 25 мм, точность не хуже 1.5 мкм, для элементов вращения диапазон до 90 градусов, точность 5;
возможность подключения к персональному компьютеру по одному из коммерчески доступных интерфейсов, включая USB 2.0;
наличие драйверов под Windows 10 и средств разработчика, включая NI Labview;
разрешение не менее 5 мегапикселей;
цветная схема, CMOS/CCD, интерфейс USB не ниже 3;
частота кадров при записи видео не менее 15 при разрешении 1900 x 1280
1 января 2025 г.
да
обязательно
на основе разработанной продукции могут быть разработаны прочие биомедицинские технологи как в области вспомогательных репродуктивных технологий, так и в смежных областях, включая регенеративную медицину (технологии клеточного репрограммирования с использованием лазерного излучения), а также в области животноводства при разведении и селекции пород домашнего скота
3
64.
Технология производства цифровых слуховых аппаратов с применением ультрасовременного звукового процессора собственного производства
аппараты слуховые
26.60.14.120
цифровые слуховые аппараты с применением ультрасовременного звукового процессора собственного производства (80нм) должны обладать:
собственным программным обеспечением;
многоканальностью (весь спектр воспринимаемых ими звуков разделяется на несколько частотных диапазонов - каналов);
функцией бинауральности восприятия пространственности звука;
беспроводной связью с различными гаджетами;
алгоритмами подавления обратной связи;
основной начинкой таких медицинских изделий станет применение миниатюрных гибко-жестких плат, позволяющих снижать массо-габаритные размеры слуховых аппаратов, ускорять процесс сборки, повышать качество работы устройств, индивидуально настраивать их под каждого пользователя с применением собственного программного обеспечения,
6 июля 2040 г.
да
неприменимо
предлагаемая к выпуску высокотехнологичная продукция имеет перспективу в области ее модификации и совершенствованию за счет: улучшения программного обеспечения для обеспечения продолжительности жизненного цикла;
вариации продукции для улучшения образа в глазах потребителей;
повышения качества продукции и расширение ассортимента (моделей) для обеспечения конкурентоспособности
1
65.
Технология производства крупногабаритных заготовок монокристаллического алмаза и инструмента на их основе
приборы оптические и фотографическое оборудование
26.7
метод производства крупных синтетических монокристаллов алмаза и инструментов на их основе, включает следующие стадии:
подготовка химически очищенных материалов в виде порошков или газов;
изготовление аппарата высокого давления для роста крупного монокристалла алмаза или подготовка вакуумной камеры для роста гомоэпитаксиальной монокристаллической алмазной пленки;
рост монокристаллического алмаза методом температурного градиента при высоком давлении и высокой температуре или методом химического осаждения из газовой фазы;
автоматизированная лазерная резка алмазов, объемных кристаллов и тонких пластин;
механическая полировка на свободном абразиве с промежуточным контролем;
рентгенооптический контроль и определение областей монокристаллов алмаза, свободных от внутренних механических напряжений;
очистка методами отмывки в кислотах, щелочах и растворителях;
формирование металлических контактных и адгезионных слоев, а также диэлектрических защитных слоев методами магнетронного напыления и оптической литографии;
создание точечных центров окраски и нарушенных слоев для реализации метода отщепления тонких пластин методами ионной имплантации или электронного облучения и высокотемпературного вакуумного отжига;
оптический контроль центров окраски, проверка однофотонной эмиссии для задач квантовой криптографии и квантовых вычислений;
контроль электрофизических характеристик;
контроль механических и теплофизических характеристик;
монтаж рабочего алмазного элемента на заготовку инструмента или в его корпус
31 декабря 2035 г.
да
неприменимо
потенциал развития предлагаемой технологии определяется в том, что монокристаллический алмаз является неповторимым материалом с рекордно высокими характеристиками (твердость, теплопроводность, подвижность носителей заряда и др.) и уникальными оптическими свойствами. Свойства алмаза известны достаточно давно, однако до сих пор не создана технология, которая позволила бы приблизить свойства реальных алмазных изделий к их теоретическому пределу. Это обусловлено тем, что в реальности любой монокристалл алмаза содержит дефекты и внутренние механические напряжения, значительно снижающие его характеристики (механические, электрические и квантово-оптические). Кроме того, важным ограничением является небольшой размер синтетических алмазов, ограниченный размером ростовой ячейки высокого давления. В настоящее время в России и в мире освоены технологии роста монокристаллов алмаза и изготовления алмазных подложек, однако качество кристаллической структуры таких подложек чрезвычайно далеко от теоретически достижимого. Лишь несколько лабораторий в мире, включая ФГБНУ ТИСНУМ, имеют технологии синтеза кристаллов с характерным размером бездефектной области более 2 мм. В то же время для задач оснащения современных рентгеновских источников оптическими элементами необходимы кристаллы с характерным размером
1
бездефектной области более 6 мм. Кроме того, кристаллы без внутренних напряжений необходимы для создания механического инструмента: резцов и сопел. Дальнейшей перспективой развития этой технологии станет рост еще более крупных кристаллов для создания еще более универсальных рентгенооптических элементов, а также крупных и составных механических инструментов, востребованных в машиностроении. В области квантовых технологий алмаз является одним из наиболее востребованных материалов, благодаря наличию в нем азот-вакансионных комплексов, выступающих в роли физических носителей единицы квантовой информации. В настоящее время разработаны алгоритмы применения алмаза с NV-центрами, однако все их реализации представляют собой пусть и рабочие, но единичные лабораторные образцы. Предлагаемый проект направлен на развитие промышленной технологии создания алмазных элементов с NV-центрами с контролируемыми характеристиками. Дальнейшей перспективой развития этой технологии может стать создание целых комплексов упорядоченных NV-центров,
имеющих оптические вводы-выводы, в формате интегральной фотонной схемы ("лаборатория-на-чипе" из алмаза). В области электроники алмаз представляет интерес как наиболее радиационно-стойкий полупроводник с высочайшими напряжением пробоя и подвижностью носителей заряда. Основными ограничениями, не позволяющими вывести алмазную электронику на широкий рынок, являются ее высокая стоимость и наличие протяженных дефектов и примесей в алмазе, значительно снижающих характеристики изделий алмазной элементно-компонентной базы. Предлагаемый проект направлен на развитие промышленной технологии создания изделий алмазной электроники на основе монокристаллов повышенного качества и прецизионного легирования, которая позволит производить такие изделия серийно, за счет чего будет понижена их стоимость. Дальнейшей перспективой развития технологии станет создание алмазных транзисторов за счет более точного контроля легирования алмаза, что в перспективе позволит разработать алмазный микропроцессор для применений в условиях высочайшей радиационной нагрузки
66.
Технология производства аппаратуры для идентификации и сортировки алмазов
приборы оптические, прочие и их части
26.70.2
технические характеристики портативных приборов идентификации бриллиантов:
способность идентификации бриллиантов от 0,01 карат и выше;
время на идентификацию одного бриллианта не более 45 секунд;
вес прибора не более 2 кг;
внешние габариты не более 20 x 30 x 15 см;
возможность питания от автономного источника;
возможность определения принадлежности бриллиантов к одной из 5 категорий;
достоверность идентификации - 99,9 процентов;
технические характеристики:
автоматический комплекс для сортировки бриллиантов по типу:
идентификация бриллиантов, изготовленных из природных и синтетических алмазов в полном автоматическом режиме;
производительность автомата в автоматическом режиме не менее 600 бриллиантов в час;
возможность определения принадлежности бриллиантов к одной из 5 категорий;
технические характеристики автоматического комплекса для сортировки бриллиантов по цвету:
сортировка в полностью автоматическом режиме по цвету алмазов размерностей от -7 + 6 до -2 + 1;
производительность не менее 10 камней в секунду;
диаметр описанной окружности проекции кристаллов от 1 мм до 2 мм;
возможность разделения массива алмазов на любые цветовые группы
31 декабря 2035 г.
да
неприменимо
потенциал развития данной технологии связан с необходимостью повышения производительности и достоверности идентификации и сортировки алмазного сырья, в целях эффективного противодействия подмене природного алмазного материала на синтетический. Одним из атрибутов драгоценного природного камня является его уникальность. Бездефектные камни редко встречаются в природе, соответственно и их стоимость бывает очень высока. Синтетические ювелирные камни практически всегда обладают более высокими качественными характеристиками по сравнению с природными кристаллами и к тому же стоят значительно меньше, чем лучшие природные камни. Наличие приборов, способных надежно отличать природные камни от синтетических кристаллов, является гарантом стабильности ювелирного рынка, а также способствует сохранению спроса на дорогие ювелирные изделия. В последние годы появляется очень много камней синтетического происхождения, которые превосходят по своему качеству и чистоте природные материалы. Данная тенденция будет только усиливаться. В США, Китае и Индии активно осваивают технологии синтеза кристаллов ювелирного
1
качества, что влечет за собой проблемы идентификации алмазного сырья и особенно бриллиантов. Под натиском китайской "синтетики" может кардинально измениться ситуация в алмазно-бриллиантовом комплексе. Себестоимость синтетических алмазов при сопоставимых параметрах ниже, чем у природных. Множество участников рынка не обладают необходимым экспертным опытом, чтобы отличить природный алмаз от синтетического, так как это требует в том числе определенной приборной базы. Кроме того, недостаточный контроль за оборотом алмазного материала ведет к ослаблению мер борьбы с источниками финансирования терроризма и идеологического экстремизма. Данная современная технология идентификации и сортировки алмазного материала строится на базе комплекса оптических и физических методов. За счет комбинации нескольких методов в рамках одного прибора удается достигать высочайшей достоверности результатов идентификации и сортировки. Таким образом, данная технология решает проблемы качественной и оперативной идентификации натуральных алмазов, тем самым способствуя
стабилизации и упорядочиванию алмазного рынка, сортировки высококачественных алмазов для промышленного использования. Технология направлена на обеспечение организаций, осуществляющих деятельность в области обработки ювелирных алмазов, передовым оборудованием, что будет способствовать цифровизации и развитию отрасли
67.
Технология мягкой рентгеновской микроскопии для внутриклеточной биологии
микроскопы оптические
26.70.22.150
общие требования:
рабочая длина волны 3.37 нм;
толщина исследуемых образцов в диапазоне от долей до десятков микрометров;
встроенная система z-томографии для восстановления внутренней структуры образцов;
трехмерное разрешение на уровне 20 - 30 нм;
проекционный объектив на основе многослойных рентгеновских зеркал нормального падения;
числовая апертура объектива не менее 0,27;
максимальное увеличение микроскопа не менее 900 крат;
исследуемые образцы должны находиться в состоянии крио- и (или) химо- фиксации, или в кюветах при нормальном давлении в воздушно/водной среде;
возможность изучения динамических процессов в клетках;
тип источника рентгеновского излучения - лазерная плазма с газовой и (или) жидкостройной мишенью;
безмасляная откачка до давления не выше 10 - 5 Торр. габаритные размеры прибора не более 1'1,5'2,5 м3;
процессы управления средствами откачки, отображение состояния систем прибора;
процессы измерения, регистрация и передача данных цифровой видеокамеры автоматизированы
4 июня 2030 г.
да
неприменимо
предлагаемая конструкция микроскопа может быть подвергнута модернизации в соответствии с требованиями конкретных заказчиков, а также имеет высокий потенциал для промышленного производства и сбыта на внутреннем и внешних рынках
1
68.
Технология изготовления программно-аппаратных диагностических комплексов на основе лазерных интерференционных микроскопов нанометрового разрешения
микроскопы оптические, электронные с нанометровым разрешением
26.70.22.150
технические характеристики:
разрешающая способность по вертикали не более 0,2 нм;
разрешающая способность в плоскости XY не более 100 нм;
быстродействие не менее 3 кадров в сек;
длина волны излучения лазера 650 - 680 нм
31 декабря 2030 г.
да
обязательно
перспектива данной технологии заключается в освоение (в промышленных масштабах) качественных инновационных медицинских приборов, неуступающих продукции мирового уровня
2
69.
Технология измерения и анализа оптического спектра в высокоскоростных волоконно-оптических системах передачи информации со спектральным мультиплексированием цифровых и интеллектуальных промышленных систем
оптические анализаторы спектра
26.70.23.190
требования к основным техническим характеристикам анализаторов оптического спектра:
диапазон измерений длины волны от 600 до 1700 нм;
пределы допускаемой абсолютной погрешности измерений длины волны 0,1 нм;
диапазон измерений уровня средней мощности оптического излучения от минус 50 до плюс 10 дБм;
пределы допускаемой относительной погрешности измерений уровня средней мощности оптического излучения 0,4 дБ;
требования к современной технологии:
способ производства - партийный в кооперации с отечественными производителями оптических элементов и корпусных изделий
5 июня 2030 г.
да
неприменимо
телекоммуникационный рынок растет в связи с широким внедрением цифровых технологий. Тенденция внедрения спектрального мультиплексирования в волоконных линиях требует соответствующего оборудования для настройки и контроля, в том числе необходимы высокоточные анализаторы спектра. При этом развитие происходит как в направлении повышения точности контроля, так и расширения спектрального диапазона. Цифровизация промышленности требует внедрения новых систем управления производством и обработки баз данных, систем проектирования, а также разработки новых производственных технологий, включая автоматизацию производственных процессов, мониторинг состояния технологического оборудования в реальном времени, технологии передачи, обработки и анализа больших массивов данных и прочие аспекты. Растут темпы оснащения предприятий станками с числовым программным управлением. Сдерживающим цифровизацию
1
промышленности фактором является сложность с внедрением систем автоматизации работы промышленного оборудования через его подключение к сети интернет. Также необходимо отметить различные ограничения на поставку такого рода зарубежных систем из-за санкционной политики Запада, недостаточно высокую надежность отечественных информационно-измерительных систем на основе датчиков и сенсоров, отсутствие доступных средств их диагностики в реальном времени и высокоточных средств диагностики неисправностей в промышленных информационных системах. При этом, доля высокоскоростных волоконно-оптических систем передачи неуклонно повышается. Высокоскоростные волоконно-оптические системы передачи используют технологии спектрального мультиплексирования, особенностью которой является передача нескольких информационных сигналов одновременно на разных несущих оптических частотах по одному оптическому волокну (каналу). Для обеспечения бесперебойной работы высокоскоростных
волоконно-оптических систем передачи необходимо наличие соответствующей технологии анализа оптического спектра. Одними из основных средств измерений, которые используются в процессе наладки и эксплуатации высокоскоростных волоконно-оптических систем передачи, являются анализаторы спектра оптические, которые позволяют измерять значения длин волн в канале передачи и предупреждать смещение длин волн с целью недопущения их переналожения, которое вызывает сбой в работе волоконно-оптических систем передачи. На текущий момент на отечественном рынке средств измерений для волоконно-оптических систем передачи представлены только зарубежные образцы, которые сложны и дороги в обслуживании, что является одним из препятствий в развитии отечественных высокоскоростных волоконно-оптических систем передачи. Разработка отечественного образца позволит минимизировать затраты на обслуживание, наладку и эксплуатацию высокоскоростных волоконно-оптических систем передачи и, в тоже время,
позволит будущему отечественному производителю серийной продукции оперативно реагировать на постоянные изменения требований операторов волоконно-оптических систем передачи к данному классу приборов. Учитывая тот факт, что рынок телекоммуникаций является одним из самых быстрорастущих, то требования к динамическому диапазону и точности анализа оптического спектра постоянно растут. Так за последние 10 лет точность измерений длин волн выросла в 10 раз, а динамический диапазон на несколько сотен нанометров. Поэтому для обеспечения конкурентоспособности серийной продукции после завершения проекта необходимо будет осуществлять постоянное совершенствование создаваемой технологии
70.
Технология получения полупроводниковых фоточувствительных материалов методом молекулярно-лучевой эпитаксии
матричные фотоприемные устройства ближнего и среднего инфракрасного диапазона
26.70.23.190
в результате внедрения предлагаемой технологии молекулярно-лучевой эпитаксии фоточувствительных полупроводниковых материалов должно быть создано производство матричных фотоприемных устройств ближнего и среднего инфракрасного диапазона
31 декабря 2030 г.
да
неприменимо
развитие данной технологии может способствовать повышению выходных характеристик существующих изделий и созданию новых типов приборов
1
71.
технология изготовления оптической системы регулирования светового пучка видимого диапазона
вторичная оптика для светодиодных светооптических систем
26.70.25.000
технические характеристики:
максимум силы света в меридиональной плоскости должен лежать в диапазоне углов от 60 до 65 градусов; максимум силы света в экваториальной плоскости должен лежать в диапазоне углов от 15 до 25 градусов; отношение максимума силы света в диапазоне углов от 60 до 65 градусов к осевой силе света (0°) в меридиональной плоскости должно быть более 3; Пропускание линзы в видимой области спектра (0,45 - 0,65 мкм) должно быть не менее 85 процентов. Вторичная оптика должна:
иметь климатическое исполнение УХЛ с диапазоном рабочих температур от - 40 °C до +60 градусов Цельсия;
степень защиты вторичной оптики от воздействий окружающей среды должна быть IP67 по ГОСТ 14254-96 "Степени защиты, обеспечиваемые оболочками (код IP)";
вторичная оптика должна сохранять свои характеристики в течение не менее пяти лет со дня отгрузки потребителю в условиях воздействия атмосферного давления, кПа (мм рт.ст.) 84,0 - 106,7 (630 - 800)
31 декабря 2030 г.
да
обязательно
потенциал предлагаемой технологии заключается в возможности создавать вторичную оптику и выполнять сопутствующие, близкие к основному направлению цели
2
72.
Технология адаптивного граничного искусственного интеллекта и предпроцессинга потока изображений для идентификации объектов и ведения автоматизированной профессиональной фото/видео съемки
оборудование компьютерное, электронное и оптическое
26
промышленная продукция должна:
производить достаточное максимальное количество вычислений внутри устройства без необходимости обращения к облачным серверам;
обеспечивать низкую задержку передачи данных и анализ в режиме реального времени;
генерировать результат (фото/видео), отвечающий требованиям профессиональной индустрии;
быть просто и быстро интегрируема в устройства категории интернет вещей (IoT);
быть применима в робототехнике для обеспечения "правополушарного" творческого зрения у машин;
должна быть модульной;
должна иметь возможность удаленного обновления и апгрейда в рамках имеющихся аппаратных мощностей;
4 июня 2045 г.
да
неприменимо
согласно отчету исследовательского агентства Tractica, ожидается увеличение поставок периферийных устройств AI с 161,4 миллиона устройств в 2018 г. до 3,6 миллиарда устройств к 2025 году
1
73.
Технология сборки, проведения контрольных испытаний, механической обработки картерных и корпусных деталей, а также изготовление роторов и статоров
Тяговый асинхронный привод с контроллером управления (электродвигатели переменного и постоянного тока универсальные мощностью более 37,5 Вт;
электродвигатели переменного тока прочие;
генераторы (синхронные генераторы) переменного тока)
27.11.2
основные характеристики продукции:
тип:
асинхронный многополюсной с внешним ротором;
охлаждение - воздушное;
максимальный крутящий момент до 450 Нм;
максимальная мощность до 50 КВт;
вес не более 25 кг;
удельный крутящий момент - 20 Нм/кг;
требования по защищенности - IP68;
коэффициент полезной деятельности - 95 процентов (с возможной оптимизацией коэффициента полезной деятельности на всех режимах работы);
ограничения по температурным и погодным режимам отсутствуют;
ударопрочное крепление до 400 кг на ось транспортного средства;
управление - контроллер собственного производства
31 декабря 2070 г.
да
обязательно
потенциал развития технологии и продукции подтверждается государственными программами Российской Федерации и связанно со следующими факторами:
значимость разрабатываемой продукции для решения приоритетных задач в области обеспечения технологической независимости отраслей экономики соответствует следующим шифрам утвержденного отраслевого плана импортозамещения (в соответствии с приказами Минпромторга России об утверждении отраслевых планов мероприятий по импортозамещению в 20 гражданских отраслях промышленности);
конкурентоспособностью, научной новизной, экспортным потенциалом и защитой окружающей среды, как посредством внедрения экологически чистых транспортных средств с нулевым выбросом в атмосферу, так и создание природоориентированного высокотехнологичного производства;
созданием новых высокопроизводительных рабочих мест;
созданием и развитием высокоэффективных тяговых асинхронных электродвигателей и систем управления ими в Российской Федерации. Кроме того, продукция, планируемая к производству в рамках Проекта, является высокотехнологичной, наукоемкой и экспортноориентированной
2
74.
Технология изготовления генераторов переменного тока мощностью 30 - 630 кВт
синхронный генератор переменного тока
27.11.26.000
технические характеристики:
мощность 30 - 630 кВт;
коэффициент полезной деятельности генератора при стопроцентной нагрузке - 85 процентов и более;
рабочий ресурс генератора - 100 000 часов
31 декабря 2025 г.
да
обязательно
освоение новой технологии производства синхронных генераторов, расширит компетенции отечественных предприятий, а также позволит улучшить характеристики дизельных электростанций за счет стабильности работы, повышения коэффициента полезной деятельности и увеличения межремонтной ресурсной наработки. Освоение полного цикла производства синхронных генераторов будет способствовать решению задачи импортозамещения и обеспечит выполнение ремонта и сервисного обслуживания зарубежных типов дизельных электростанций
2
75.
Технология разработки, сертификации и серийного производства модульной энергетической установки на базе крупнотоннажного рефрижераторного контейнера, размещенной на железнодорожной фитинговой платформе
контейнер дизель-генераторный (установки генераторные с двигателями внутреннего сгорания с воспламенением от сжатия)
27.11.31.000
технические характеристики основной и резервной электростанций:
мощность 184 кВт (каждая);
топливный блок с запасом топлива до 24 тыс. литров;
размещение на 80-футовых инновационных железнодорожных фитинговых платформах;
электроснабжение не менее 20 крупнотоннажных рефрижераторных контейнеров с установленным потреблением электроэнергии до 9,6 кВт в час;
не менее 24 крупнотоннажных рефрижераторных контейнеров с установленным потреблением электроэнергии до 7,5 кВт в час;
системы удаленного управления и мониторинга спутниковой связи АО "ГЛОНАСС";
запас хода при максимальной нагрузке до 24 суток;
срок службы - 30 лет
31 декабря 2025 г.
да
неприменимо
данная технология является перспективной в связи с тем, что существующий на сети ОАО "РЖД" парк рефрижераторных вагонов и вагонов-термосов:
не соответствует регламентам и стандартам ЕАЭС;
допускает разрыв непрерывной холодовой цепи, что влечет потери качества перевозимой замороженной продукции;
имеет истекающий срок эксплуатации;
наблюдается отток объемов перевозок скоропортящейся продукции с железнодорожного на автомобильный транспорт
1
76.
Технология производства современных высокоэффективных мехатронных и электромеханических компонентов робототехнических комплексов (систем)
электродвигатели, генераторы и трансформаторы
27.11
технические характеристики для следящих электроприводов малой и средней мощности, предназначенных для комплектования узлов и агрегатов перспективных образцов робототехники различного назначения:
мощность на валу 200 - 3500 Вт;
частота вращения 3000, 4000, 5000, 6000, 8000 об/мин
1 июня 2030 г.
да
неприменимо
технология имеет потенциал совершенствования и модернизации. Освоение технологии позволит создать следующие базовые компетенции:
технологии изготовления прецизионных мелко- и среднемодульных планетарных редукторов с числом ступеней от 1 до 5 и силовых зубчатых редукторов с ограниченным и неограниченным углом поворота;
технологии создания прецизионных актуаторов;
технология создания современных серий управляемых бесконтактных двигателей постоянного тока, в т.ч. с внешними многополюсными роторами на основе редкоземельных неколлинеарно намагниченных магнитопластов с заданным распределением магнитного поля. Следующие комплектующие изделий для робототехнических комплексов (систем):
микроминиатюрные, малые и средние электродвигатели, мотор-редукторы, изготавливаемые по модульному принципу;
мехатронные модули на их основе;
1
дистанционно управляемые роботизированные модули, платформы, манипуляторы;
электродвигатели для силовых установок бесконтактных двигателей постоянного тока малого и особомалого классов;
регулируемые электроприводы для колесных и гусеничных шасси дистанционно управляемых платформ и экологически чистых транспортных средств;
исполнительные устройства и механизмы систем технического зрения и дистанционного наблюдения;
исполнительные устройства для высокотехнологичной медицинской техники;
силовые и исполнительные устройства для средств и систем реабилитации инвалидов, включая экзоскелеты
77.
Технология производства высокоэффективных тяговых электрических приводов
электродвигатели, генераторы и трансформаторы
27.11
технические характеристики:
тип - тяговый электрический двигатель синхронный с возбуждением от постоянных магнитов, силовой преобразователь инвертора с IGBT силовыми ключами;
охлаждение - комбинированное (жидкостное основное, дополнительное воздушное с набегающим потоком воздуха);
максимальный крутящий момент - 3 типоразмера (310 Нм, 620 Нм, 810 Нм);
максимальная мощность - 3 типоразмера (70 кВт, 120 кВт, 160 кВт);
вес - 3 типоразмера;
удельный крутящий момент - 3 типоразмера (50 кг, 100 кг, 120 кг);
удельный расход энергии на километр пути при скорости движения 50 км/ч - удельный расход энергии зависит от технических характеристик транспортных средств и может варьироваться для семейства транспортных средств КАМАЗ и степени его загруженности от 0,4 до 1,1 кВтч/км при скорости движения 50 км/ч;
требования по защищенности - IP67;
максимальный коэффициент полезной деятельности двигателя 95 процентов;
максимальный коэффициент полезной деятельности преобразователя 95 процентов;
ограничения по температурным и погодным режимам - температура;
векторное управление тяговым электрическим двигателем;
данный электрический привод не имеет элементов, таких как коллекторный узел, создающих искрение, что повышает его безопасность
30 декабря 2030 г.
да
неприменимо
тяговый электрический привод позволяет обеспечивать автоматизированный или роботизированный метод управления траекторией движения транспортного средства Создаваемые тяговые электрические приводы могут быть востребованными в конструкции различных транспортных средств:
грузовых, пассажирских как с двигателями внутреннего сгорания, так и с тяговым электрическим приводом, в том числе беспилотных;
техническое решение может быть востребовано как отечественными производителями транспорта так и зарубежными
1
78.
Технология сборки, проведения контрольных испытаний, механической обработки картерных и корпусных деталей, а также изготовление роторов и статоров
тяговый электродвигатель (электродвигатели, генераторы и трансформаторы)
27.11
технические характеристики:
номинальные мощности - 50 кВт, 85 кВт, 150 кВт;
номинальный крутящий момент - 110 Нм, 200 Нм, 1500 Нм;
диапазон рабочих напряжений DC - 350 - 700 В;
тип системы охлаждения - жидкостное;
максимальные обороты - 9000 об/мин (50 кВт, 85 кВт), 3700 об/мин (150 кВт);
тип - синхронный двигатель с постоянными магнитами (3 фазы);
коэффициент полезной деятельности - не менее 95 процентов;
степень защиты (класс IP) для корпуса - IP67;
диапазон предельных рабочих температур окружающего воздуха - от минус 40 до плюс +85 градусов Цельсия
31 декабря 2025 г.
да
обязательно
современная технология имеет потенциал развития. В настоящее время тяговый электропривод получил большое распространение, а ужесточение экологических норм по выбросу вредных веществ определяют дальнейшее расширение и тиражирование данного вида привода на автотранспорте. Следовательно, имеется большой потенциал развития, как для легкового, коммерческого, так и специализированного транспорта
3
79.
Технология сборки, проведения контрольных испытаний, механической обработки картерных и корпусных деталей, а также изготовление роторов и статоров
энергоэффкективный тяговый электрический привод для транспортных средств (электродвигатели, генераторы и трансформаторы)
27.11
технические характеристики:
ресурс не менее 15 лет;
удельный крутящий момент не менее 6-7 Нм/кг;
удельная мощность не менее 1,5 - 2 кВт/кг
31 декабря 2035 г.
да
неприменимо
на базе созданных тяговых двигателей будут продолжены работы по созданию и усовершенствованию энергоэффективных, экологически чистых транспортных средств с высокими эксплуатационными показателями, отвечающими перспективным требованиям
1
80.
Технология изготовления индукторного электродвигателя ИД-400-400М
индукторный электродвигатель ИД-400-400М (электродвигатели, генераторы и трансформаторы)
27.11
технические характеристики:
простота конструкции;
надежность;
энергоэффективность
28 декабря 2049 г.
да
обязательно
технология имеет потенциал в области ее совершенствования и модернизации как технологического процесса, так и самой продукции. Из анализа доступных источников информации можно сделать вывод, что в настоящее время только в России имеются внедренные разработки вентильно-индукторных электроприводов большой мощности (свыше 500 кВт). Пока мы занимаем лидирующие позиции в данном направлении электромашиностроения нужно развивать и внедрять соответствующие технологии
2
81.
Технология повышения динамики движения самосвала за счет вентильно-индукторного двигателя привода мотор-колеса БелАЗ-75131 или эквивалента
вентильно-индукторная электромашина для тягового электропривода автотранспорта (электродвигатели, генераторы и трансформаторы)
27.11
Основные характеристики продукции:
тип - ИД-500-6;
вес - 3800 кг;
требования по защищенности - IP00;
коэффициент полезной деятельности - 95 процентов;
средний ресурс до капитального ремонта - не менее 20 000 часов;
средняя наработка на отказ - не менее 15 000 часов;
наработка подшипника (расчетная) - 20 000 часов.
1 июня 2109 г.
да
обязательно
у технологии существует потенциал развития. В рамках данной тематики возможно повышение эффективности добычи при использовании самосвала БелАЗ-75131. Также снижается негативное воздействие на окружающую среду
3
82.
Технология производства свинцово-кислотных аккумуляторов с применением наноструктурированных высокоупорядоченных углеродных структур
батареи и аккумуляторы
27.20
требования к выпускаемой продукции:
соответствие требованиям, установленным в техническом регламенте Таможенного союза "О безопасности колесных транспортных средств" (ТР ТС 018/2011) для данного вида продукции (при наличии);
соответствие продукции постановлению Правительства Российской Федерации от 20 сентября 2017 г. N 1135 "Об отнесении продукции к промышленной продукции, не имеющей произведенных в Российской Федерации аналогов, и внесении изменений в некоторые акты Правительства Российской Федерации";
соответствие ГОСТ Р 58139-2018 "Системы менеджмента качества. Требования к организациям автомобильной промышленности";
обязательное выполнение всех требований, установленных в разделе "II. Продукция автомобилестроения" приложения к постановлению Правительства Российской Федерации от 17 июля 2015 г. N 719 "О подтверждении производства промышленной продукции на территории Российской Федерации" для соответствующих компонентов"
31 декабря 2025 г.
да
обязательно
с учетом существующих потребностей рынка современная технология имеет потенциал развития. Возможно дальнейшее развитие характеристик выпускаемой продукции
3
83.
Технология производства тяговых накопителей энергии для транспортных средств с тяговым электрическим и гибридным приводом
аккумуляторы электрические
27.20.2
технические характеристики производимой продукции:
удельная энергоемкость единичных аккумуляторов не менее 400 Втч/кг;
удельная энергоемкость накопителей энергии не менее 300 Втч/кг;
удельная энергоплотность единичных аккумуляторов 450 Втч/л;
удельная энергоплотность накопителей энергии не менее 330 Втч/л;
ресурс не менее 3000 циклов при глубине разряда 100 процентов
31 декабря 2035 г.
да
неприменимо
на базе созданных накопителей энергии будут продолжены работы по созданию энергоэффективных экологически чистых транспортных средств с высокими эксплуатационными показателями
1
84.
Технология производства стартерных свинцовых аккумуляторов типов EFB (Enhanced Flooded Battery) и AGM (Absorbent Glass Mat) с наноструктурированными высокоупорядоченными углеродными структурами
аккумуляторы свинцовые для запуска поршневых двигателей
27.20.21.000
требования к технологии:
достижение аккумуляторами ресурсных характеристик в соответствии с требованиями Европейского стандарта EN 50342-6:
микро-гибридный тест (Micro-hybrid test);
циклирование с глубиной разряда аккумулятора 17,5 процентов (DOD cycle test);
циклирование с глубиной разряда аккумулятора 50 процентов (DOD Cycle test);
применение наноструктурированных высокоупорядоченных углеродных структур в качестве добавки к массе отрицательного электрода в свинцовых аккумуляторах дает:
значительное сокращение времени зарядки аккумулятора на 15 - 25 процентов, продление срока службы свинцовой батареи более, чем на 25 - 30 процентов;
свинцовые аккумуляторы вида EFB и AGM с применением наноструктурированных высокоупорядоченных углеродных структур пластинчатого и трубчатого типов выдерживают в 2,5 раза большее количество циклов в условиях глубокого разряда и ограниченного времени зарядки по сравнению со стандартным аккумулятором;
технические преимущества аккумуляторов EFB с наноструктурированными высокоупорядоченными углеродными структурами:
двойной (по сравнению со стандартными аккумуляторами) ресурс и устойчивость к циклическим нагрузкам (обеспечивают до 300 циклов "заряд-разряд");
уменьшенная потеря емкости после глубокого разряда;
4 июня 2050 г.
да
неприменимо
дальнейшее совершенствование технологии производства стартерных свинцовых аккумуляторов вида EFB (Enhanced Flooded Battery) и AGM (Absorbent Glass Mat) с применением наноструктурированных высокоупорядоченных углеродных структур пластинчатого и трубчатого типов заключается в следующем:
совершенствование технологии изготовления электродов благодаря применению вакуумного миксера;
изготовление решеток (пластин, электродов) из графита;
развитие на базе данной технологии производства биполярных аккумуляторов, где в качестве токопроводящих перегородок используются керамические элементы, которые включают в себя оксиды титана (за счет этого достигается высокая степень проводимости тока, данный сплав прекрасно противостоит коррозии). Замена свинцового материала электрода на наноструктурированные высокоупорядоченные углеродные структуры приведет к тому, что аккумуляторы станут на 40 процентов легче, а также повысится коэффициент полезного действия до 90 процентов (в настоящее время он составляет 50 - 60 процентов)
1
увеличенный прием зарядного тока (выше на 40 процентов, по сравнению со стандартными аккумуляторными батареями);
лучшая коррозионная стойкость электродов при высоких температурах (выше на 40 процентов по сравнению с обычными аккумуляторами);
широкий диапазон рабочих температур (от -50 °C до +60 °C);
минимальное время заряда (за счет улучшенных на 40 процентов показателей приема зарядного тока);
высокая эксплуатационная безопасность - крышка аккумуляторов оснащена лабиринтной системой газоотвода;
технические преимущества аккумуляторов AGM с наноструктурированными высокоупорядоченными углеродными структурами:
еще большая (по сравнению с аккумуляторами EFB):
устойчивость к циклическим нагрузкам (выдерживают до 500 циклов "заряд-разряд");
стойкость к вибрации, высоким и низким температурам;
низкий уровень саморазряда (до 3 процентов в месяц);
высокая скорость заряда (в 4 раза быстрее, чем у стандартных аккумуляторов);
высокий пусковой ток даже при низкой степени заряженности;
срок службы - в 2 - 3 раза больше, чем у стандартных аккумуляторов;
стоимость эксплуатации ниже, чем у стандартных аккумуляторов;
герметичность конструкции и отсутствие потребности в обслуживании;
соответствие требованиям современных авто с усовершенствованной системой "StarStop" и рекуперативным торможением
85.
Технология производства тяговой аккумуляторной батареи
тяговая аккумуляторная батарея
27.20.23
технические характеристики:
удельная энергоемкость, батареи аккумуляторов энергии не менее 300 Втч/кг;
удельная плотность энергии батареи аккумуляторов не менее 330 Втч/л;
ресурс не менее 3000 циклов при глубине разряда 100 процентов;
система жидкостного термостатирования;
степень защиты - IP67
31 декабря 2025 г.
да
обязательно
технология имеет потенциал развития поскольку в мировой автомобильной промышленности взят курс на сокращение выбросов углекислого газа от автотранспорта, а также на повышение энергоэффективности эксплуатации, что приводит к внедрению тягового электропривода. В настоящее время в Российской Федерации уже производится автотранспорт с использованием литий-ионных накопителей, однако сборка их не локализована, также как и не реализована схема их утилизации. Внедрение технологии производства перспективных накопителей электроэнергии и батарей позволит значительно снизить их стоимость и качественно подойти к процессу утилизации, вышедших из строя элементов
3
86.
Технология производства систем накопления энергии на основе литий - ионных аккумуляторных батарей
система накопления энергии на основе литий - ионных аккумуляторных батарей
27.20.23.130
технические характеристики:
диапазон мощностей - 0,04 - 10 МВт;
диапазон емкостей - 0,1 - 12 МВт·ч;
эффективность зарядно-разрядного цикла модуля - 95 процентов;
удельная энергоемкость подсистемы накопления не менее 140 Вт·ч/кг;
удельная плотность энергии подсистемы накопления не менее 300 Вт·ч/л
31 декабря 2025 г.
да
обязательно
режим работы энергосистемы определяется степенью нагрузки на нее со стороны потребителей. Электрическая нагрузка непрерывно меняется, постоянные колебания осложняют задачу сохранения баланса между производством и потреблением электрической энергии и приводят к тому, что генерирующие мощности значительную часть времени работают в экономически не оптимальном режиме. Данная проблема, а также ряд других могут быть решены с помощью технологий промышленного накопления энергии. Эффекты от накопления:
использование накопителей позволит оптимизировать процесс производства электроэнергии за счет выравнивания графика нагрузки на наиболее дорогое генерирующее оборудование, а также избавить дорогую тепловую генерацию от роли регулятора, что приведет к сокращению расходов углеводородного топлива, повышению коэффициента использования установленной мощности электростанций, увеличит надежность энергоснабжения и снизит потребности в строительстве новых мощностей;
2
накопители позволяют создать энергетический резерв без избыточной работы генерирующих мощностей, оптимизировать режим работы электростанций, обеспечить спокойное прохождение ночного минимума и дневного максимума нагрузок;
для потребителя электроэнергия становится дешевле, повышается надежность энергоснабжения, можно обеспечить работу критического оборудования при перебоях с питанием и создать резерв на случай аварий;
накопители снижают пиковую нагрузку на электрические подстанции и затраты на модернизацию сетевой инфраструктуры, а также повышают качество и надежность энергоснабжения потребителей
87.
Технология производства проточных батарей для стационарного накопления и хранения электроэнергии на основе редокс-систем
проточная батарея на основе редокс-систем
27.20.23.190
технические характеристики:
число циклов зарядки-разрядки не менее 10000;
электродвижущая сила не менее 1,0 - 1,2 В;
долговечность не менее 10 лет;
удельная энергия - 35 - 50 Вт·ч/кг;
электрическая емкость определяется объемом резервуаров для хранения электролита
31 декабря 2025 г.
да
неприменимо
основным направлением совершенствования данной продукции является получение новых, более эффективных и дешевых редокс-систем
1
88.
Технология полного цикла производства опорных труб и стержней из высокочистого синтетического кварцевого стекла, преформ и специальных кварцевых оптических волокон
опорные трубы и стержни высокочистого синтетического кварцевого стекла (волокна оптические и жгуты волоконно-оптические)
27.31.12.110
требования к основным техническим характеристикам (опорные трубы и стержни):
обеспечение максимальной чистоты кварцевого стекла (общая концентрация примесей переходных металлов не выше 1 ppm);. обеспечение высокой оптической однородности кварцевого стекла (изменение показателя преломления не выше 1 x 10 - 6);
возможность легирования кварцевого стекла для изготовления опорных труб с повышенным и пониженным показателем преломления;
возможность масштабирования опорных труб в широких пределах
31 декабря 2030 г.
да
неприменимо
промышленная технология может быть усовершенствована для соответствующих стадий производства специальных оптических волокон от опорных труб и стержней до преформ и их последующей вытяжки, в том числе за счет совмещения разных вариаций экологически безопасных органических соединений в качестве исходного сырья и модификаций плазмохимических методов получения безгидроксильного кварцевого стекла
1
89.
Технология производства нанотрубок для радиопоглощения
провода и кабели электронные и электрические прочие
27.32.1
требования к технологии:
рост длинных углеродных нанотрубок в виде непрерывного тяжа, включающего преимущественно длинные двустенные углеродные нанотрубки цилиндрической (коаксиальной) структуры в аэрозольном высокотемпературном (1100 - 1200 градусов Цельсия) реакторе (с накоплением на приемном устройстве в виде бобины, вмещающей не менее 1 км тяжа);
производство материалов из полученных длинных углеродных нанотрубок;
ультразвуковое диспергирование снятых с приемного устройства нанотрубок в органическом растворителе с получением устойчивой дисперсии с характерной длиной взвешенных нанотрубок;
дозирование в дисперсию связующего компонента с получением углеродной пасты либо углеродного клея;
или дозирование дисперсии в полимерную либо керамическую матрицу в количестве от 1 до 3 процентов об. с получением радиопоглощающего покрытия;
или вытягивание электропроводящего шлейфа или электропровода из бобины с нанотрубками или совместная экструзия или 3D печать гибридного волокна из нанотрубок и пека/пековой смолы
31 декабря 2035
да
неприменимо
потенциал развития данной современной технологии определяется прежде всего тем, что основной ее компонент, сверхдлинные углеродные нанотрубки, которые являются принципиально отличными, по своим базовым свойствам, от других применяемых и перспективных видов и компонентов современных углеродных материалов. Длинные углеродные нанотрубки характеризуются длиной единичной молекулярной фибриллы до нескольких сантиметров, что позволяет приблизить создаваемые на этой основе материалы к свойствам идеальной индивидуальной нанотрубки, а именно:
прочность на разрыв - 100 ГПа;
модуль упругости - 1100 ГПа;
электропроводность - 107 См/м;
теплопроводность - 7000 Вт/м/К. Заявленные в проекте свойства создаваемых материалов опираются на уже существующие практические достижения, и потому пока значительно уступают упомянутым выше показателям, хотя и превосходят многие решения. Помимо названных численных характеристик, длинные нанотрубки обеспечивают также свойства, дающие существенные конкурентные преимущества продуктам:
1
уникально малый допустимый радиус изгиба (менее 1 микрометра);
отсутствие ограничений по циклической изгибающей нагрузке, что создает ранее неизведанные возможности в области конструкционных волокон и материалов для транспорта. Еще одним неиспользованным потенциалом развития является планируемое увеличение длины единичного молекулярного филамента (нанотрубки) до нескольких сотен метров, что позволит перейти к созданию ультравысокопрочных волокон и тросов с прочностью свыше 20 ГПа
90.
Технология производства высокоинтенсивных светодиодных источников освещения
светодиодные светильники и прожекторы
27.40.15
требование к технологии:
создание высокоинтенсивных светодиодных источников освещения в диапазоне мощностей от 250 до 1 000 Вт с высоким коэффициентом полезной деятельности использования светового потока и равномерного светового пятна во всем диапазоне фокусных расстояний
1 января 2025 г.
да
обязательно
технология позволяет создать высокоинтенсивные и высокоэффективные светодиодные источники освещения в диапазоне мощностей от 250 до 1 000 Вт;
технология позволит увеличить выпуск продукции с высокой долей добавленной стоимости и возможностью последующего экспорта такой продукции;
внедрение технологии позволит снизить габариты и энергозатраты источников освещения, а также снизить общее энергопотребление осветительных систем
3
91.
Технология получения этилена и пропилена при пиролизе углеводородного сырья в присутствии водяного пара, предварительно обработанного микроволновым излучением
электронагреватели проточные или аккумулирующего типа, погружные кипятильники
27.51.25
требования к технологии:
интенсификация процесса пиролиза углеводородов путем предварительной микроволновой обработки воды, используемой для получения пара. Пиролиз прямогонного бензина в присутствии предварительно обработанной микроволновым излучением воды приводит:
к увеличению образования этилена и пропилена не менее чем на 7 процентов;
к увеличению образования бензола не менее чем на 24 процентов;
к снижению образования побочных продуктов - неароматических углеводородов и тяжелой смолы пиролиза не менее чем на 33 процентов;
к снижению образования кокса на 30 процентов (применительно к промышленным печам). Пиролиз газообразного сырья (бутановой фракции и этана) в присутствии предварительно обработанной микроволновым излучением воды приводит:
к увеличению образования этилена, не менее чем на 7 процентов;
к снижению образования кокса не менее чем на 14 процентов
1 июля 2030 г.
да
обязательно
становление нефтеперерабатывающей и нефтехимической промышленности (как отрасли) произошло после внедрения деструктивных процессов переработки нефти и нефтепродуктов - крекинга и пиролиза, а затем синтеза из полученных продуктов необходимых соединений. Несмотря на интенсивные исследования по разработке новых методов пиролиза, за последние 40 - 50 лет все изменения в этой технологии касались изменения конструкций печей и радиантных змеевиков (трубчатых реакторов). В результате, выход этилена на современной печи пиролиза типа SRT-VI составляет не более 30 процентов масс, максимальная возможная нагрузка по сырью составляет 40 т/час. Дальнейшее увеличение выходов этилена и других продуктов термического пиролиза при применении существующей технологии проблематично. Решением данной проблемы может быть внедрение принципиально новых технологий и подходов, позволяющих увеличить формирование целевых продуктов пиролиза. При этом,
2
следует учитывать, что полная замена термических печей потребует колоссальных финансовых затрат. Поэтому, вариант модернизации существующих установок более перспективен. По предварительным расчетам экономический эффект (без учета выхода побочных продуктов и увеличения межремонтного интервала печи) от внедрения данной разработки может составить свыше 1,5 млрд. рублей
92.
Технология производства компактных циклотронов с локальной самозащитой
циклотроны
27.90.11.145
технические характеристики:
тип ускоряемых частиц - P;
энергия пучка - 12МэВ;
ток пучка - 50мкА;
тип источника ионов - внутренний;
плоскость ускорения - горизонтальная;
локальная защита - да;
типы мишеней - водная, газовая;
нарабатываемые изотопы:
F18, N13, C11, O15;
двойная мишень - да;
активность на конец облучения, Ки/ГБк: F18-5/185; N13-1/3.7; C11-4/148; O15-8/31;
автоматический переключатель мишеней - да;
мощность энергопотребления не более 60 кВт;
программное обеспечение для удаленной эксплуатации - да;
гарантия
31 декабря 2030 г.
да
обязательно
внедрение современной технологии в серийное производство позволит создать компетенции по промышленному производству циклотронов используемых для производства медицинских изотопов в Российской Федерации. Так же внедрение технологии, позволит снизить себестоимость производства на 10 процентов и получать лучшие технические характеристики, что отразится на стоимости выпускаемых радиофармпрепаратов. Внедрение предлагаемой технологии позволит снизить эксплуатационные расходы и повысить эргономику оборудования
2
93.
Технологии производства среднетемпературных термогенераторов
источник тока термоэлектрический (машины электрические и аппаратура специализированные прочие, не включенные в другие группировки)
27.90.11.900
требования к технологии и техническим характеристикам:
повышение надежности термогенератора за счет повышения силы когезии между термоэлектрическим материалом и коммутационными шинами в 2 раза;
повышение мощности термоэлектрического генератора в 1,05 - 1,1 раз;
увеличение срока службы термоэлектрического генератора за счет эффективного барьерного слоя
31 декабря 2035 г.
да
неприменимо
проект выполняется с целью повышения энергоэффективности прежде всего автономных и необслуживаемых источников питания. В настоящее время на магистральных газопроводах уже эксплуатируется более 12000 автономных источников электрической энергии, питающих системы автоматики, телемеханики и катодной защиты, где в качестве источников тока используются термогенераторы на газовом топливе, отбираемом из газопровода. Повышение добротности термоэлектрического материала даст возможность повысить КОЭФФИЦИЕНТ ПОЛЕЗНОЙ ДЕЯТЕЛЬНОСТИ термогенераторов, что в свою очередь приведет к сокращению расхода газа и будет способствовать в определенной степени ресурсосбережению. Как автономный источник электрической энергии технология позволит реализовывать программы по освоении Арктики. Позволит пользоваться информационно - телекоммуникационными системами в неэлектрофицированных уголках Земли и не только
1
94.
Технология производства керамических конденсаторов с электродами из неблагородных металлов
конденсатор керамический (конденсаторы электрические)
27.90.5
технические характеристики:
многослойные керамические конденсаторы для поверхностного монтажа двух групп по температурной стабильности емкости (ТСЕ) МП0 и Н30;
номинальные напряжения, В - 6,3; 10; 16; 25; 50;
габаритные размеры - 1005М, 1608М, 2012М, 3216М, 5750М;
номинальные емкости - МП0 1пФ-0,15мкФ, Н30 220пФ-4,7мкФ
31 декабря 2040 г.
да
неприменимо
потенциал развития заключается в возможности совершенствования метода производства продукции, которое приведет к улучшению характеристик изделий (уменьшение габаритных размеров, расширение рядов номинальных емкостей и номинальных напряжений). Создание технологии производства керамических конденсаторов с электродами из неблагородных металлов на отечественном предприятии позволит увеличить удельную емкость конденсаторов, снизить конечную стоимость изделий и уменьшить импортозависимость при производстве промышленной продукции
1
95.
Технология вывода статической, динамической и графической информации на дорожные светофоры
Светофор с функцией отображения графической информации
27.90.70
технические характеристики:
значения осевой силы света сигналов транспортного светофора должны лежать в диапазоне 300-2500 кд;
значения осевой силы света сигналов пешеходного светофора должны лежать в диапазоне 50 - 2500 кд;
яркостный контраст излучения по всей площади сигнала светофора должен быть не более 10:1;
цикл анимации предоставляется в виде отдельных изображений в разрешении 64 x 64 пикселя для пешеходного светофора и 32 x 32 пикселя для транспортного;
временной интервал индикации должен составлять от 0 до 199 секунд;
необходимо наличие в каждом модуле светофора возможности загрузки изображений, анимации, текста во FLASH память через WEB-интерфейс, Wi-Fi, CAN;
электрическая прочность изоляции от токопроводящих элементов изделия, а также изоляция заземляющего провода и проводов питания должна выдерживать без повреждения испытательное напряжение 1500 В переменного тока частотой 50 Гц в течение 1 минуты
31 декабря 2030 г.
да
неприменимо
технология имеет потенциал модернизации, совершенствования и развития, а также интеграции в современные системы интеллектуальных транспортных сетей и развития концепции "умных городов" в Российской Федерации
1
96.
Технология производства поршневых промышленных двигателей нового поколения, включая газовые и газодизельные модификации, мощностью в диапазоне 500 - 4000 кВт
поршневые двигатели внутреннего сгорания с воспламенением от сжатия (прочие)
28.11.13
технические требования:
соответствие требованиям, установленным в Технических Регламентах Таможенного Союза для данного вида продукции (при наличии);
соответствие Правилам Российского Морского Регистра Судоходства;
обеспечение предельных выбросов вредных веществ с отработавшими газами не выше уровней Stage 3 и TIER 3 за счет совершенства рабочего процесса двигателя без использования дополнительных систем обработки отработавших газов;
наличие микропроцессорной системы управления впрыском топлива и диагностики двигателя;
максимально допустимое давление сгорания топлива не ниже 200 - 250 Бар;
максимально допустимое давление впрыска топлива не ниже 1800 - 2500 Бар;
удельный расход топлива в режиме номинальной мощности не выше 195 - 200 г/кВт*ч;
ресурс 50000 - 70000 моточасов
31 декабря 2025 г.
да
неприменимо
имеется потенциал повышения экологического класса двигателей до уровня TIER 5(Stage 5) за счет применения систем топливоподачи с микропроцессорным управлением Common Rail с высоким давлением впрыска и многофазным впрыском топлива, регулируемых турбокомпрессоров и дополнительных систем обработки отработавших газов после создания соответствующей российской компонентной базы;
имеется потенциал увеличения удельной мощности двигателей до 25 процентов за счет повышения максимального давления сгорания до 250 Бар и давления впрыска топлива до 2500 Бар;
возможность создания газовых и газодизельных модификаций двигателей
1
97.
Технология производства промышленных и судовых двигателей мощностью 500 кВт и выше
поршневые двигатели внутреннего сгорания с воспламенением от сжатия (прочие)
28.11.13
технические требования:
соответствие требованиям, установленным в Технических Регламентах Таможенного Союза для данного вида продукции (при наличии);
соответствие Правилам Российского Морского Регистра Судоходства;
обеспечение предельных выбросов вредных веществ с отработавшими газами не выше уровней Stage 3 и TIER 3 за счет совершенства рабочего процесса двигателя без использования дополнительных систем обработки отработавших газов;
наличие микропроцессорной системы управления впрыском топлива и диагностики двигателя;
максимально допустимое давление сгорания топлива не ниже 200 - 250 Бар;
максимально допустимое давление впрыска топлива не ниже 1800 - 2500 Бар;
удельный расход топлива в режиме номинальной мощности не выше 195 - 200 г/кВт*ч;
ресурс 50000 - 70000 моточасов
31 декабря 2025 г.
да
неприменимо
имеется потенциал повышения экологического класса двигателей до уровня TIER 5(Stage 5) за счет применения систем топливоподачи с микропроцессорным управлением Common Rail и дополнительных систем обработки отработавших газов;
имеется потенциал увеличения удельной мощности двигателей до 25 процентов за счет повышения максимального давления сгорания до 250 Бар и давления впрыска топлива до 2500 Бар;
возможность создания газовых и газодизельных модификаций двигателей
1
98.
Технология серийного производства сложных отливок, корпусов для охлаждающих компрессоров, гидравлических систем, корпусов для промышленных насосов и других литых изделий под заказ
поршневые двигатели внутреннего сгорания с воспламенением от сжатия (прочие)
28.11.13
требования технологии:
литье из серого чугуна на автоматизированных и неавтоматизированных (ручная формовка) линиях по мировому стандарту DIN EN 1561;
литье из уплотненного (червеобразного чугуна) по мировому стандарту DIN ISO 16112;
литье изделий в соответствии с требованиями заказчика в целях последующего производства промышленной продукции согласно мировым стандартам качества по нормам EN DIN;
ручная и автоматизированная (роботизированная) формовка;
конструирование и оптимизация форм и стержней
5 июня 2026 г.
да
обязательно
литейное производство является базовой отраслью заготовительного передела машиностроения. От ее развития зависит устойчивость производства машин и оборудования и стратегическая конкурентоспособность отрасли в целом. В настоящее время литейная промышленность России испытывает ряд проблем. Средний уровень загрузки мощностей в России отстает от ведущих государств. Несоответствие текущих мощностей и потребностей машиностроительных предприятий приводит к низкой загрузке и повышенным общепроизводственным расходам. Машиностроительные предприятия, имеющие литейные цеха, в основном не поставляют отливки на рынок, а используют их для внутреннего потребления и обеспечения собственных нужд. Отрасль испытывает недостаток инвестиционных ресурсов и находится в убыточном состоянии. Модернизация предприятий путем обновления оборудования недостаточна для производства продукции, соответствующей мировым стандартам качества и требованиям конкретных заказчиков. В целях производства продукции надлежащего качества необходимо внедрение существующих современных технологий и создание серийных производств, рассчитанных на заказы различных отраслей. Учитывая изложенное, представленная современная технология в целях организации производства импортозамещающей и экспортоориентированной литейной продукции обладает высоким потенциалом
2
99.
Технология создания системы каталитической нейтрализация отработавших газов транспортных и промышленных двигателей внутреннего сгорания
поршневые двигатели внутреннего сгорания с воспламенением от сжатия
28.11.13
требования к продукции:
уровни эффективности снижения выбросов вредных веществ до 95 процентов по оксиду углерода и несгоревшим углеводородам;
до 97 процентов по оксидам азота;
до 99 процентов по дисперсным частицам РМ10.
Требования к технологии:
сборка механических и электронных компонентов систем нейтрализации;
программирование электронных компонентов;
контроль с помощью газоаналитического оборудования
31 декабря 2025 г.
да
неприменимо
потенциал развития технологии высок, так как она обеспечивает уровень концентрации вредных веществ ниже соответствующих предельных допустимых норм в локальных зонах расположения энергетических установок, а также вдоль траекторий движения силовых установок. Кроме того, технология предполагает дистанционный мониторинг качества воздуха в зонах расположения систем нейтрализации
1
100.
Технология изготовления турбинного оборудования мощностью до 2,5 МВт, работающих на различных видах топлива
турбина газовая
28.11.23.000
технические характеристики:
номинальная мощность до 2,5 МВт;
коэффициент полезной деятельности не менее 28 процентов;
вид топлива - природный газ, нефтяной попутный газ, дизельное топливо, керосин, биодизель;
электроэнергия переменного тока до 6,3 кВт
31 декабря 2025 г.
да
обязательно
потенциал развития технологии высокий по следующим причинам:
коэффициент полезной деятельности выше 28 процентов;
увеличение межремонтного ресурса с 25000 часов на 40 процентов;
снижение недожога топлива вследствие повышенной температуры среды сжигания твердого топлива;
увеличение коэффициента использования топлива в варианте когенерации на 40 процентов;
объем рынка турбин малой мощности до 2030 года составляет 5000 млн. руб.;
доля импорта в 2019 году - 250 млн. руб. (100 процентов);
потенциальный объем экспорта до 2030 года - 500 млн. руб.
2
101.
Технология создания частей, деталей, узлов турбин, включая разработку технологии промышленного изготовления порошков для повышения эксплуатационных свойств продукции энергетического машиностроения
части турбин
28.11.3
требования к частям турбин:
коэффициент полезной деятельности насоса 90 процентов;
плотная структура с минимальной пористостью (не более 5 процентов;
толщина покрытия 0,2 - 2,0 мм);
прочность сцепления покрытия с подложкой не менее 20 МПа;
низкая шероховатость покрытия до 0,8 Ra;
наличие антиадгезионного эффекта и стойкость к газоабразивному износу. Требования к порошкам:
размер частиц от 4 до 80 микрон;
плотность металла до 99 процентов;
использование плазменного и газового методов распыления
1 июня 2030 г.
да
неприменимо
потенциал технологии:
срок службы изделий может быть повышен не менее чем на 30 процентов;
модернизация оборудования для подготовки поверхности и нанесения покрытий;
разработка и усовершенствование составов применяемых материалов для нанесения покрытий путем создания композиций;
применение систем покрытий из различных материалов, обеспечивающих сочетание требуемых свойств;
увеличение диапазона размера частиц композиционных порошков;
совершенствование методов нанесения порошков на детали турбин для улучшения эксплуатационных свойств
1
102.
Технология изготовления лопаток компрессора из титановых сплавов газовых турбин наземного и воздушного базирования, включая турбины для вертолетов
части турбин
28.11.3
технические характеристики:
предел прочности не менее 1200 МПа;
ударная вязкость КСU не менее 350 КДж/ м2;
100-часовая длительная прочность при 400 градусов Цельсия не менее 800 МПа;
предел выносливости б-1 не менее 450 МПа на базе 2 x 107 циклов
04 июня 2060 г.
да
обязательно
Уровень потенциала развития технологии оценен как средний. Результаты научных разработок являются базисом для создания современных конкурентноспособных технологических процессов изготовления высоконагруженных лопаток с увеличенным (не менее чем на 20 - 25 процентов) ресурсом работы, за счет повышения прочности и предела выносливости на 20 процентов. Развитие данной технологии заключается в применении при производстве роторных лопаток, включая изготовление моноколес компрессора с использованием линейной сварки трением
2
103.
Технология изготовления лопаток для турбин газовых (кроме турбореактивных и турбовинтовых) мощностью 65 МВт и более
части газовых турбин, кроме турбореактивных и турбовинтовых двигателей
28.11.33.000
требования к основным техническим характеристикам (свойствам) компонентов горячего тракта газовых турбин большой мощности устанавливаются действующими ГОСТ и техническими условиями изготовителей иностранных турбин. Сопловые лопатки:
вес до 50 кг.;
габаритные размеры до 800 мм. Рабочие лопатки:
монокристалл (вес до 8 кг., габаритные размеры до 350 мм.);
направленная кристаллизация (вес до 10 кг., габаритные размеры до 450 мм.);
равноостное литье (вес до 60 кг., габаритные размеры до 1000 мм);
межремонтная ресурсная наработка не менее 24000 - 25000 эквивалентных часов с возможностью увеличения до 32000 - 41000 эквивалентных часов
31 декабря 2025 г.
да
обязательно
освоения новой технологии производства литых заготовок компонентов горячего тракта турбин (включая монокристаллическое литье и направленную кристаллизацию) расширит компетенции отечественных предприятий, обеспечит локализацию в России производства лопаток для газовых турбин мощностью до 500 МВт. Одновременно с этим освоение новых технологий литья позволит улучшить характеристики инновационных турбинных лопаток, за счет применения высокоэффективных систем охлаждения и передовых жаропрочных материалов. Внедрение таких инновационных турбинных лопаток при модернизации существующих турбин позволит:
повысить эффективность, за счет повышения температуры газов перед сопловым аппаратом первой ступени согласно до 1250 градусов Цельсия;
3
снизить стоимость жизненного цикла, за счет увеличения межремонтных интервалов до 32 000 - 33 000 эквивалентных часов. При этом коэффициент полезной деятельности газовых турбин может быть увеличен на 1 - 2 процентов. Освоение полного цикла производства литых заготовок компонентов горячего тракта для газовых турбин иностранного производства будет способствовать решению задачи импортозамещения и обеспечит выполнение ремонтов и сервисного обслуживания зарубежных типов газотурбинного оборудования
104.
Технология по производству компонентов управления бензиновым двигателем внутреннего сгорания
части двигателей внутреннего сгорания с искровым зажиганием, кроме частей авиационных двигателей
28.11.41
компоненты управления бензиновым двигателем имеют следующие основные технические характеристики:
дроссельная заслонка с электронным управлением:
номинальное напряжение 13,5 0,5 В;
скорость открытия заслонки 250 град/с (при открытии) и 350 град/с (при закрытии);
диапазон рабочих температур - от 40 до 140 градусов Цельсия;
утечка через подшипник оси заслонки < 8 см3/мин при 1,8 бар. электронная педаль газа:
номинальное напряжение 12 В;
потребляемая мощность не более 0,5 Вт;
выходной сигнал широтно-импульсной модуляции с частотой 200 Гц. Механизм переключения длины впускных каналов:
номинальное напряжение 13,5 0,5 В;
утечка через заслонки < 12 см3/мин при 1,5 бар. система изменения фаз газораспределительного механизма:
угол регулирования фазы газораспределения 25 1,5 град по распределительному валу;
рабочее давление масла 7,0 бар;
максимальная утечка 800 см3/мин
31 декабря 2025 г.
да
обязательно
комплекс современных технологий производства компонентов управления бензиновым двигателем имеет потенциал развития. Есть возможность совершенствования метода производства промышленной продукции, которая усилит существующие или приведет к появлению новых уникальных свойств промышленной продукции и (или) способа производства промышленной продукции
3
105.
Технология производства и сборки компенсаторов клапанного зазора двигателя внутреннего сгорания методом глубокой вытяжки с применением высокопроизводительных многопозиционных трансферных процессов
части двигателей внутреннего сгорания с искровым зажиганием, кроме частей авиационных двигателей
28.11.41
промышленной продукцией являются компенсаторы клапанного зазора двигателей внутреннего сгорания с искровым зажиганием;
конструкция продукции должна соответствовать следующим техническим требованиям:
доступный ход 2,5 мм;
утечка 0,45 см3 за 3 с при температуре 20 градусов С, нагрузке 1500 Н и вязкости масла 70 4 мм2/с
31 декабря 2025 г.
да
обязательно
потенциал развития и совершенствования предложенной современной технологии производства и сборки компенсаторов клапанного зазора двигателя внутреннего сгорания методом глубокой вытяжки с применением высокопроизводительных многопозиционных трансферных/прогрессивных процессов и сборки имеется за счет перехода к передовым цифровым, интеллектуальным производственным технологиям, роботизированным системам, новым материалам
2
106.
Технология изготовления и сборки двигателя внутреннего сгорания
части двигателей внутреннего сгорания с искровым зажиганием, кроме частей авиационных двигателей
28.11.41.000
требование к технологии:
литье (гравитационное, под давлением) или ковка заготовок блока цилиндров, головки блока цилиндров, коленчатого вала, поршня;
автоматическая линия механической обработки алюминиевых компонентов двигателя и коленчатого вала;
конвейерная линия сборки двигателя внутреннего сгорания с установкой блока, головки, коленчатого вала, распределительного вала, шатунно-поршневой группы, впускного коллектора с установленным катализатором, пластикового выпускного коллектора и других навесных компонентов;
осуществление тестовых испытаний
31 декабря 2025 г.
да
неприменимо
потенциал технологии является высоким, так как на основе данной современной технологии возможно производство промышленной продукции, конкурентоспособной на мировом уровне
1
107.
Технология производства компенсаторов клапанного зазора двигателя внутреннего сгорания методом глубокой вытяжки с применением высокопроизводительных многопозиционных прогрессивных прессов
Части двигателей внутреннего сгорания с искровым зажиганием, кроме частей авиационных двигателей
28.11.41
промышленной продукцией являются компенсаторы клапанного зазора двигателей внутреннего сгорания с искровым зажиганием. Конструкция продукции должна соответствовать следующим техническим требованиям:
доступный ход 2,5 мм;
утечка 0,45 см3 за 3 с при температуре 20 градусов Цельсия, нагрузке 1500 Н и вязкости масла 70 4 мм2/с
31 декабря 2025 г.
да
обязательно
Потенциал развития и совершенствования имеется. Представленная технология производства и сборки гидравлических компенсаторов клапанного зазора методом глубокой вытяжки с применением высокопроизводительных многопозиционных трансферных процессов является современной, на основе этой технологии возможна организация производства продукции конкурентоспособной на российском и мировом уровне
2
108.
Технология сборки гидравлических компенсаторов клапанного зазора
гидравлические компенсаторы клапанного зазора
28.11.41.000
промышленной продукцией являются гидравлические компенсаторы клапанного зазора двигателей внутреннего сгорания с искровым зажиганием. Конструкция продукции должна соответствовать следующим техническим требованиям:
доступный ход 2,5 мм;
утечка 0,45 см3 за 3 с при температуре 20 градусов Цельсия, нагрузке 1500 Н и вязкости масла 70 4 мм2/с
31 декабря 2025 г.
да
обязательно
Потенциал совершенствования имеется. Данная технология непрерывно совершенствуется в рамках глобального НИОКР в Группе компаний, к которой принадлежит Заявитель
2
109.
Технология сборки механизмов регулирования фаз газораспределения
механизмы регулирования фаз газораспределения (части двигателей внутреннего сгорания с искровым зажиганием, кроме частей авиационных двигателей)
28.11.41.000
требования к технологии:
сборка механизмов регулирования фаз газораспределения в модульной сборочной линии, с контролем параметров сборки, а также характеристик продукции за фиксированный цикл времени.
31 декабря 2025 г.
да
обязательно
потенциал совершенствования имеется. Преимущества, обеспечивающие конкурентоспособность продукции в условиях серийного производства:
себестоимость продукции;
стабильность процесса;
снижение уровня дефектов в 2 раза;
прослеживаемость;
сбор и анализ данных
2
110.
Технология производства газодизельной системы питания "газ - дизель" для конверсии дизельных двигателей в газодизельный режим
газодизельная система для дизельных двигателей от 100 до 2100 лс. (части прочих двигателей, не включенных в другие группировки)
28.11.42.000
требования к технологии:
комплект оборудования, позволяющий эксплуатировать дизельные двигатели в газодизельном режиме;
основная часть энергии, потребляемой двигателем внутреннего сгорания, должна будет поступать от сгорания природного газа, в то время как дизельное топливо должно использоваться как запальное;
в случае окончания газового топлива транспортного средства должно автоматически переключаться в дизельный режим работы;
коэффициент замещения дизельного топлива газовым не менее 60 процентов;
расход газового топлива на 1 литр замещенного дизельного топлива не более 1.1 куб. нм.;
в дизельный двигатель не должны вносится конструктивные изменения. Газодизельная система питания должна соответствовать Правилам КВТ ЕЭК ООН N 110 и N 143
31 декабря 2025 г.
да
обязательно
потенциал развития заявляемой технологии высокий, она попадает под действие программы газификации транспорта. На основе современной технологии возможно производство промышленной продукции, конкурентоспособной на мировом уровне
2
111.
Технология производства сборно-сварного рабочего колеса для крупных насосов, имеющих повышенный коэффициент полезной деятельности за счет точной 3D обработки и бесшаблонного позиционирования его отдельных частей
насосы и компрессоры прочие
28.13
технические характеристики:
величина рабочего колеса - 86 - 88 процентов (к расчетной);
коэффициент полезной деятельности насоса - 90 процентов
1 июня 2030 г.
да
неприменимо
потенциал развития технологии:
изготовление деталей усложненных форм;
достижение коэффициент полезной деятельности насоса до 90 процентов;
снижение материалоемкости на 40 процентов
1
112.
Технология производства ряда химических насосов с полимерной проточной частью для тяжелых условий эксплуатации
насосы для перекачки жидкостей;
подъемники жидкостей
28.13.1
технические характеристики:
перекачивание химически активных жидкостей в том числе кислот, щелочей и органических растворителей;
плотность рабочей среды до 1850 кг/м3;
высокие антикавитационные качества;
исключительная химическая стойкость деталей проточной части насосов
1 января 2041 г.
да
неприменимо
уровень потенциала развития технологии оценен как средний. Данная технология позволит:
улучшить на 15 процентов энергетические характеристики химических насосов, эксплуатируемых в тяжелых условиях;
использовать композитные материалы и пластполимеры с высоким механическими свойствами и стойкостью в широком диапазоне химических сред;
увеличить коэффициент полезной деятельности насосов на 10 процентов;
увеличить степень локализации продукта до 90 процентов;
увеличить срок службы насосов;
увеличить наработки между ремонтами;
увеличить степень унификации компонентов до 55 процентов
1
113.
Технология производства перистальтических пьезоэлектрических микронасосов точного дозирования
перистальтические пьезоэлектрические микронасосы точного дозирования (насосы для перекачки жидкостей;
подъемники жидкостей)
28.13.1
технические характеристики:
диапазон вязкости прокачиваемых жидкостей от 0,5 до 33 Па·с.;
производительность (объемная подача) насоса 0,1 - 10 мл/мин;
максимальное давление на выходе 1,20 - 1,96 кПа. Требования к надежности:
средняя наработка на отказ для блока насоса не менее 500 часов и не менее 10 000 часов для блока питания;
требования к условиям эксплуатации:
рабочая частота прибора:
50 2 Гц.;
потребляемая мощность не более 3 ВА;
прибор допускает непрерывную работу в рабочих условиях в течение 2 часов с сохранением технических характеристик. Рабочие условия эксплуатации:
температура окружающей среды от +5 до +40 градусов Цельсия;
относительная влажность воздуха 90 процентов при температуре 25 градусов Цельсия;
напряжение сети (220 20) В;
атмосферное давление 630 - 820 мм рт.ст. (84.0 - 109.3 кПа)
31 декабря 2040 г.
да
неприменимо
технология имеет высокий потенциал развития из-за использования современных методов моделирования и ориентации на технологии микроэлектромеханических систем производства и нанотехнологиях. Устройства, разработанные на основе предлагаемой технологии, являются конкурентоспособными и высоко востребованными в медицинской, химической и электронной промышленности на мировом уровне
1
114.
Технология разработки ряда центробежных насосов мощностью до 1 МВт для перекачивания нефти и нефтепродуктов
Промышленные центробежные насосы мощностью до 1 МВт (API610) (насосы для перекачки жидкостей;
подъемники жидкостей)
28.13.1
технические характеристики:
безопасность процессов нефтепереработки;
надежность насосов;
повышенный ресурс работы и срок службы;
взаимозаменяемость с насосами произведенными зарубежными производителями;
стандартизация узлов насосов;
упрощение проектирования, освоение технологий производства под конструктивные требования стандарта;
мощность до 1 МВт;
соответствие по коэффициенту полезной деятельности лучшим мировым аналогам
1 января 2041 г.
да
неприменимо
данная технология позволит:
обеспечить безопасность процессов нефтепереработки;
увеличить коэффициент полезной деятельности насосов на 10 процентов;
увеличить степень локализации продукта до 90 процентов;
увеличить срок службы насосов;
увеличить наработки между ремонтами;
увеличить степень унификации компонентов до 55 процентов. Также перспективность разрабатываемой продукции заключается в замене оборудования импортного производства, на соответствующее API610 оборудование отечественного производства
1
115.
Технология производства мембранно-поршневых насосов
мембранно-поршневые насосы
28.13.12
технические характеристики мембранно-поршневых насосов соответствуют стандартам API674 и API675. Оборудование разработано с учетом требований API 674 и 675 (Американского нефтяного института). Рабочие характеристики технологического насоса - 77 м3/ч - 1200 бар (макс.). температура жидкости - от -50 до +200 градусов Цельсия;
относительная плотность - 0,1 - 13,6;
вязкость:
100 000 мПа·с (макс.). существует возможность проектирования конкретной конфигурации, даже если отдельные условия эксплуатации превышают значения заявленных параметров, такие как экстремально высокая (выше 200 градусов Цельсия) или низкая температура (ниже минус 50 градусов Цельсия), жидкость с примесью абразивных частиц и прочее
31 декабря 2030 г.
да
обязательно
конструкция оборудования постоянно совершенствуется с помощью современных аналитических технологий, таких как конечно-элементная модель, расчетная гидрогазодинамика и прочие. Кроме того, возможна разработка и внедрение технологии анализа производительности насосов при помощи технологий "Смарт", "Интернет вещей" или искусственного интеллекта. Мембранно-поршневый насос, производимый на основе заявляемой технологии, как технологический насос, обладает следующими преимуществами:
отсутствие риска утечки;
возможность снизить риск для особо агрессивных жидкостей и жидкостей с высоким давлением пара, легковоспламеняющихся и взрывоопасных жидкостей;
стабильная работа (благодаря моноблочной конструкции привода с равномерно сдвинутым по фазе вращения кривошипно-шатунным валом достигается более низкая пульсация установившегося потока и сниженный уровень вибрации);
повышенная точность (за счет принципа работы по типу плунжерного насоса оборудование обеспечивает определенный расход в соответствии с требованиями технологического процесса);
расширенный диапазон применения.
2
116.
Технология извлечения высоковязкой нефти из малодебитных скважин, в том числе скважин, осложненных механическими примесями, с помощью новой конструкции объемно-роторных насосов
Объемно-роторный пластинчатый насос (насосы роторные объемные прочие для перекачки жидкостей)
28.13.13
Технические характеристики объемно-роторного пластинчатого насоса габарита 5:
типоразмер - 92 мм;
напор - 30 м/ступень;
вязкости 20 - 5000 сСТ;
коэффициент полезной деятельности - 40 процентов при 30 сСТ;
диапазон скоростей 500 - 1000 об/мин;
номинальная частота вращения - 750 об/ мин. Технические характеристики объемно-роторного пластинчатого насоса габарита 5А:
типоразмер - 103 мм;
напор - 100 м/ступень при 100 сСт;
коэффициент полезной деятельности - 40 процентов при 100 сСт;
диапазон скоростей 500 - 1000 об/мин Требования к продукции:
насос должен состоять из модуль-секций насоса или быть односекционным. В состав модуль-секции насоса должны входить основные детали:
ступени, подшипники, корпус, головка и основание. Головка и основание должны иметь конструктивные элементы для соединения секций и между собой и обеспечивать возможность присоединения других элементов установки
31 декабря 2024 г.
да
обязательно
уровень потенциала развития технологии оценен как средний. Аналогичный продукт на сегодняшний день на рынке не представлен. Объемно-роторный насос является инновационной разработкой, которая способна заменить стандартные применяемые виды насосов, увеличив срок службы установки
3
117.
Технология производства герметичных моноблочных центробежных электронасосных агрегатов
центробежные герметичные насосы с гильзованным двигателем (насосы центробежные подачи жидкостей прочие)
28.13.14.110
технические характеристики:
перекачка различных сжиженных газов;
подача до 200 куб./ч;
напор до 600 м;
температура перекачиваемой жидкости от -200 градусов Цельсия до +450 градусов Цельсия;
плотность перекачиваемой жидкости от 0.3 до 13.6 г/см3;
вязкость до 500 МПа·с
31 декабря 2032 г.
да
обязательно
уровень потенциала развития технологии оценен как средний. В результате внедрения технологии в Российской Федерации должно быть освоено серийное производство центробежных насосов, применяемых в технологических производственных процессах в химической и нефтехимической промышленности. Диапазон его применения чрезвычайно широк, насос может использоваться в тяжелых условиях эксплуатации, таких как высокая температура, высокое давление и сверхнизкая температура
2
118.
Технология производства жидкостных детандеров
жидкостные детандеры для сжиженного природного газа (насосы центробежные подачи жидкостей прочие)
28.13.14.110
технические характеристики:
производительностью до 2000 м3/ч;
напор до 1200 м
31 декабря 2040 г.
да
неприменимо
уровень потенциала развития технологии оценен как средний. Указанная технология необходима в рамках развития отрасли сжиженного природного газа России, в том числе для реализации крупнейших проектов по производству сжиженного природного газа, так как жидкостные детандеры являются важным звеном в технологической цепочке производства и транспортировки сжиженного природного газа
1
119.
Технология производства насосов для сжиженного природного газа малой мощности
насосы для сжиженного природного газа малой мощности (насосы центробежные подачи жидкостей прочие)
28.13.14.110
технические характеристики:
мощность:
от 0,25 кВт до 250 кВт.;
подача:
от 0,2 м3./ч до 80 м3/ч;
напор:
от 5 м до 1300 м;
диапазон рабочих температур:
от -40 градусов Цельсия до -180 градусов Цельсия
31 декабря 2030 г.
да
обязательно
указанная технология является технологией широкого спектра применения и призвана обеспечить технологическое и промышленное развитие в области производства, транспортировки, хранения и использования сжиженного природного газа и других сжиженных газов в различных отраслях промышленности Российской Федерации. В предлагаемом проекте планируется локализация серийного производства криогенных насосов малой мощности на территории Российской Федерации. Производственная мощность рассчитывается на покрытие потребностей российского рынка в насосах данного типа, с частичным замещением продукции иностранного происхождения, а также на экспортные поставки зарубежным заказчикам. В рамках развития данной технологии предусмотрена адаптация производимых продуктов к специфическим потребностям российского рынка. Также в рамках освоения производства компонентов насосов и насосных агрегатов на территории Российской Федерации планируется переход на использование материалов российского производства, что позволит дополнительно увеличить степень локализации производимого оборудования
2
120.
Технология производства насосов сжиженного природного газа средней и большой мощности
насосы сжиженного природного газа средней и большой мощности (насосы центробежные подачи жидкостей прочие)
28.13.14.110
технические характеристики:
количество ступеней от 1 до 22;
мощность от 5 кВт до 3000 кВт;
Подача от 10 м3/ч до 2500 м3/ч;
напор от 20 м до 3500 м;
диапазон рабочих температур от -40 градусов Цельсия до -180 градусов Цельсия
31 декабря 2032 г.
да
обязательно
уровень потенциала развития технологии оценен как средний. В результате внедрения технологии в Российской Федерации должно быть освоено серийное производство центробежных насосов, применяемых в технологических производственных процессах в химической и нефтехимической промышленности. Диапазон его применения чрезвычайно широк, насос может использоваться в тяжелых условиях эксплуатации, таких как высокая температура, высокое давление и сверхнизкая температура
2
121.
Технология производства погружных насосов для добычи нефти малого и сверхмалого диаметра
электроцентробежные насосы (насосы центробежные подачи жидкостей прочие)
28.13.14.110
технические характеристики:
число типоразмеров погружных электрических двигателей от 7 до 28 в каждом габарите;
диапазон мощностей от 8 до 650 кВт. В зависимости от конструкции электродвигатели могут изготавливаться в различных модификациях, например с трубчатым охладителем (для температуры окружающей среды до 200 градусов Цельсия), с двухсторонним выходом вала (для установок перевернутого типа, или присоединения погружного сепаратора механических примесей)
1 июня 2042 г.
да
обязательно
уровень потенциала развития технологии оценен как средний. Компания стала первопроходцем в разработке технологий энергоэффективных электроцентробежных насосов. Данные вентильные электродвигатели лидируют в отрасли по надежности и эффективности, затрачивая на 15 процентов меньше энергии на подъем барреля нефти, чем это делают типичные для индустрии асинхронные двигатели
3
122.
Технология плазменной наплавки материала с параллельной роботизированной механической обработкой для формирования крупноразмерных деталей, имеющих сложную криволинейную форму
рабочие колеса, лопасти насосов и гидротурбин (насосы для ядерных установок)
28.13.14.120
требования к технологии:
разработка и внедрение технологии должно обеспечить повышенную точность формы поверхности рабочих колес;
повышение коэффициент полезной деятельности гидроагрегатов до 90 процентов;
увеличение срока службы гидроагрегатов на 30 процентов;
повышение прочностных характеристик наплавленных материалов на 10 процентов (по сравнению с паспортными значениями этих материалов после проката)
31 декабря 2035 г.
да
неприменимо
плазменная наплавка позволяет получать практически любые металлические сплавы, в том числе, стойкие к температурным воздействиям, с высокой износо-и коррозионной стойкостью, отличающиеся сложностью при обработке и сварке в обычных условиях. Использование аддитивных технологий дает возможность выращивания из таких сплавов деталей сложной формы и больших габаритов с возможной длительной эксплуатацией. Дальнейшее развитие технологии предусматривает снижение отклонения размеров и шероховатости поверхности деталей, полученных по этой технологии, что позволит увеличить коэффициент полезной деятельности гидроагрегатов до 92 процентов
1
123.
Технология производства энергоэффективного насосного оборудования для водоотведения и водоснабжения, способствующая оптимизации стоимости жизненного цикла
центробежные насосы подачи жидкостей прочие;
насосы прочие
28.13.14
технические характеристики (насосы с радиальным потоком, многоступенчатые, с диаметром выпускного патрубка более 15 мм):
подача в диапазоне от 0 до 200 м3/ч;
напор в диапазоне от 0 до 330 м;
двигатели энергоэффективные IE3/4;
минимальный индекс энергоэффективности MEI 0,7;
диапазон мощностей электродвигателей от 0,37 до 55 кВт. Технические характеристики (насосы центробежные погружные, одноступенчатые, влагозащищенные по ip68):
подача в диапазоне от 0 до 390 м3/ч;
напор в диапазоне от 0 до 73 м;
двигатели энергоэффективные IE3;
диапазон мощностей электродвигателей:
от 0,9 до 26,5 кВт. Технические характеристики (насосы с радиальным потоком, одноступенчатые, с единственным входным рабочим колесом, моноблочные):
подача в диапазоне от 0 до 380 м3/ч;
напор в диапазоне от 0 до 93 м;
двигатели энергоэффективные IE3/4;
минимальный индекс энергоэффективности MEI от 0,4 до 0,7;
диапазон мощностей электродвигателей от 0,12 до 90 кВт. Технические характеристики (насосы с радиальным потоком, одноступенчатые, с единственным входным рабочим колесом):
подача в диапазоне от 0 до 1000 м3/ч;
напор в диапазоне от 0 до 150 м;
двигатели энергоэффективные IE3/4;
минимальный индекс энергоэффективности MEI от 0,44 до 0,7;
диапазон мощностей электродвигателей от 0,25 до 200 кВт. Технические характеристики (установки повышения давления на базе насосов с радиальным потоком, многоступенчатые):
подача в диапазоне от 0 до 890 м3/ч;
напор в диапазоне от 0 до 160 м;
двигатели энергоэффективные IE3/4/5;
минимальный индекс энергоэффективности, MEI от 0,7;
диапазон мощностей электродвигателей от 0,37 до 37 кВт
31 декабря 2050 г.
да
обязательно
уровень потенциала развития технологии оценен как средний. На данный момент электродвигатели, используемые в насосном оборудовании в Российской Федерации представлены моделями с классом энергоэффективности IE1 или IE2. Использование электродвигателей класса IE3, как стандартного, при учете того, что наиболее популярные диапазоны мощностей, используемых в различных отраслях народного хозяйства и промышленности - от 0,37 до 22 кВт, позволит увеличить эффективность использования электроэнергии на 8 - 10 процентов. Внедряемая технология потенциально позволяет быть основой для создания и использования электродвигателей класса IE4 и IE5
2
124.
Технология производства турбокомпрессоров (ТКР) для применения в составе дизельных с рабочим объемом 4 - 28 литров
турбокомпрессоры
28.13.25
технические характеристики:
рабочий объем двигателей - от 4 до 28 литров;
размерность - 5,5 - 14;
целевой коэффициент полезной деятельности в диапазоне от 65 процентов до 70 процентов. Требование к технологии:
высокий уровень локализации производства (не ниже 50 процентов)
31 декабря 2025 г.
да
неприменимо
реализация данного проекта позволит обеспечить полноценное импортозамещение турбокомпрессоров для высоконагруженных двигателей и приведет к значительному росту экспорта данного вида продукции
1
125.
Технология производства современных турбокомпрессоров с электронным управлением
турбокомпрессоры
28.13.25
технические характеристики:
максимально допустимая частота вращения вала ротора не менее 550 м\с;
коэффициент полезной деятельности компрессора не менее 78 процентов;
коэффициент полезной деятельности турбины не менее 65 процентов;
максимально допустимая температура газов не менее 950 градусов Цельсия;
система электронного регулирования параметров турбокомпрессора;
внедрение новых материалов с высокими механическими свойствами и теплостойкостью. Материал колеса турбины с пределом прочности не менее 600 МПа при температуре 950 градусов Цельсия;
материал корпуса турбины - сталь жаропрочная высоколегированная, работающая длительное время при температурах 950 °C (Примеры:
20Х23Н18, 1.4848, 1.4849)
1 января 2025 г.
да
обязательно
реализация данного проекта позволит обеспечить полное импортозамещение турбокомпрессоров с электронным управлением для современных двигателей и приведет к значительному росту экспорта данного вида продукции
2
126.
Технология производства современных турбокомпрессоров
турбокомпрессоры
28.13.25
технически характеристики:
степень повышения давления воздуха до 5,5;
расход воздуха до 5,5 кг/с;
суммарный коэффициент полезной деятельности турбокомпрессора при совместной работе на характерном режиме двигателя не менее 64 процентов;
ресурс до капитального ремонта 7000 м·час (1200000 км пробега);
ресурс до списания 20 лет (2400000 км пробега)
1 января 2035 г.
да
неприменимо
уровень потенциала развития технологии оценен как средний. Предлагаемый проект позволит:
обеспечить отечественное производство средне- и высокооборотных двигателей современными агрегатами наддува;
обеспечить повышение технических характеристик агрегатов наддува;
реализация проекта обеспечит создание высокотехнологичных производств материалов и комплектующих турбокомпрессоров
1
127.
Технология электронно-лучевой сварки роторов турбокомпрессоров
турбокомпрессоры
28.13.25
основные технические характеристики планируемой к производству продукции:
сварка широкого диапазона толщина от 0,1 - 100 мм.;
100 процентов проплавление;
улучшенная динамика транспортного средства. Требования к технологии:
получение прецизионных сварных швов без необходимости дополнительной обработки;
Возможность работы с CAD-CAM моделями
31 декабря 2025 г.
да
обязательно
технология электронно-лучевой сварки при производстве ротора турбокомпрессора способна вытеснить существующую технологию сварки трением на 100 процентов за счет ценовых и качественных показателей
2
128.
Технология производства высокоэффективных компрессорных установок, модулей и автомобильных газонаполнительных компрессорных станций на базе поршневых объемных компрессоров
компрессоры поршневые объемные
28.13.26
технические характеристики:
содержание масла не более 5 PPM (с возможностью модернизации технологии до 100 процентов отсутствия масла в газе на выходе компрессора);
производительность установок от 500 до 2000 м3\час;
номинальная мощность от 90 до 400 кВт;
давление нагнетания до 275 бар;
высокая эффективность (потребление электрической энергии на 10 - 20 процентов ниже для сжатия одного ку. м. газа, чем у существующих российских аналогов)
31 декабря 2040 г.
да
обязательно
уровень потенциала развития технологии оценен как средний. Технология производства компримированного природного газа за счет изготовления без масляного поршневого компрессора позволяет обеспечить содержание масла не более 5 PPM в составе газа на выходе компрессора, при этом имеется возможность модернизации технологии, а именно обеспечение 100 процентов отсутствия масла в газе на выходе компрессора, что позволит расширить сферу применения технологии и оборудования (например, пищевое производство, фармацевтика и т.д.)
3
129.
Технология производства компрессорных установок поршневого типа
компрессорные установки поршневого типа мощностью до 4000 кВт
28.13.26.000
требования к технологии:
возможность серийного производства с организацией производственных цепочек кооперации внутри Российской Федерации;
возможность работать в широком диапазоне изменения давлений, как всасывания, так и нагнетания, при сохранении высоких значений коэффициент полезной деятельности;
возможность сжатия газов с высоким содержанием сероводорода;
возможность исполнения с различными видами двигателей;
работа в любых климатических условиях при температуре окружающей среды от -60 до +50 градусов Цельсия
31 декабря 2050 г.
да
обязательно
потенциал развития технологии лежит в области переработки газов и получения современных материалов, в том числе сжиженного природного газа
2
130.
Технология изготовления прецизионных приводов на аэростатических направляющих
механизмы исполнительные пневматические
28.14.20.122
технические характеристики:
длина хода не менее 300 мм;
точность позиционирование не более 200 нм;
плоскостность не более 200 нм
31 декабря 2030 г.
да
неприменимо
при модернизации технологии, возможно увеличение длины хода, точности позиционирования, уменьшения параметра плоскостности
1
131.
Технология обработки (модификации) сопрягаемых заготовок многослойных сильфонов с применением фтортензидного состава
многослойный сильфон
28.14.20.210
технические характеристики:
материал - нержавеющая сталь типа 18 - 10 (0Х18Н10Т);
фтортензидный состав МОКОМ-1К;
сдаточный параметр (в циклах) 10000;
величина рабочего хода в изделии (с учетом режима "сжатие - растяжение") больше на 20 - 25 процентов, по сравнению с принятой в настоящее время;
температура рабочей среды минус 60 - плюс 450 градусов Цельсия;
количество допустимых опрессовок пробным давлением - без ограничения;
вероятность безотказной работы в течение назначенного ресурса 0,99;
назначенный срок службы 50 лет;
назначенный ресурс 400000 часов, 5000 - 10000 циклов
1 июня 2050 г.
нет
неприменимо
потенциал развития технологии лежит в области:
совершенствования методов обработки (модификации) трубок-заготовок слоев многослойного сильфона;
автоматизация процесса зачистки концов обработанных трубок-заготовок;
альтернативные материалы для включения в состав трубок;
расширение диапазона применения до 550 градусов С, а также криогенных температурах
1
132.
Технология серийного производства сложных отливок, корпусов для охлаждающих компрессоров, гидравлических систем, корпусов для промышленных насосов и других литых изделий под заказ
подшипники, зубчатые колеса, зубчатые передачи и элементы приводов
28.15
требования к технологии:
литье из ковкого чугуна с шаровидным графитом по мировому стандарту DIN EN 1563;
литье из серого чугуна на автоматизированных линиях (автоматическая формовка) и неавтоматизированных (ручная формовка) по мировому стандарту DIN EN 1561;
литье из уплотненного (червеобразного чугуна) по мировому стандарту DIN ISO 16112;
литье алюминия в кокиль под низким давлением по мировому стандарту DIN EN 1706;
гравитационное литье по мировому стандарту DIN EN 1563
5 июня 2026 г.
да
обязательно
литейное производство является базовой отраслью заготовительного передела машиностроения. От ее развития зависит устойчивость производства машин и оборудования и стратегическая конкурентоспособность отрасли в целом. В настоящее время литейная промышленность России испытывает ряд проблем. Средний уровень загрузки мощностей в России отстает от ведущих государств. Несоответствие текущих мощностей и потребностей машиностроительных предприятий приводит к низкой загрузке и повышенным общепроизводственным расходам. Машиностроительные предприятия, имеющие литейные цеха, в основном не поставляют отливки на рынок, а используют их для внутреннего потребления и обеспечения собственных нужд. Отрасль испытывает недостаток инвестиционных ресурсов и находится в убыточном состоянии. В целях производства продукции надлежащего качества необходимо внедрение существующих современных технологий и создание серийных производств, рассчитанных на заказы различных отраслей. Учитывая изложенное, представленная современная технология в целях организации производства импортозамещающей и экспортоориентированной литейной продукции обладает высоким потенциалом
2
133.
Технология нанесение износостойких и коррозионностойких покрытий, в том числе алмазоподобных
подшипники качения шариковые
28.15.10.110
требование к технологии:
предотвращение коррозии;
предотвращение прохождения электротока и замедление абразивного износа;
покрытие полного подшипника без учета отклонений допусков и технических характеристик;
снижение коэффициента трения < 0,1 при осевом движении смещение колец подшипников;
защита от коррозии для различных условий окружающей среды в соответствие стандарту DIN EN ISO 12944-2;
категории коррозионности C1 до C5-м
31 декабря 2025 г.
да
обязательно
потенциал совершенствования имеется за счет применения передовых цифровых, интеллектуальных, роботизированных производственных систем для достижения ценовой конкурентоспособности в глобальном масштабе
2
134.
Технология получения заготовок колец подшипников методами холодной и горячей раскатки
подшипники качения роликовые
28.15.10.120
требования к технологии:
получение заготовок колец подшипников, методами холодной и горячей раскатки.
5 июня 2035 г.
да
обязательно
потенциал совершенствования имеется. Данная технология непрерывно совершенствуется в рамках глобального НИОКР в Группе компаний, к которой принадлежит Заявитель
2
135.
Технология автоматизированной сборки подшипников качения
подшипники качения роликовые с коническими роликами
28.15.10.123
технические характеристики выпускаемой продукции:
до 50 процентов снижение трения (в сравнении с подшипниками аналогичной конструкции, при одинаковом смазывании, и одинаковых условиях эксплуатации);
до 20 процентов снижение рабочей температуры (в сравнении с подшипниками аналогичной конструкции, при одинаковом смазывании, и одинаковых условиях эксплуатации);
качественные показатели каждого типа подшипника определяются по нормированным методикам стандартов DIN и ИСО.
Требование к технологии:
улучшение показателя подшипника достигается за счет создания специальной "платовидной" структуры поверхности качения
5 июня 2035 г.
да
обязательно
потенциал совершенствования имеется. Данная технология непрерывно совершенствуется в рамках глобального НИОКР. Ежегодно получаются сотни патентов в области подшипниковых технологий. Данные патенты относятся к показателям качества, таким как трение, грузоподъемность, надежность, а также к технологичности производства и экономической эффективности, и к выбору материалов и применению покрытий. Нет оснований полагать, что данная работа прекратится. Существует фокус на изучение, разработку и внедрение требований к применяемым материалам, повышение стабильности, создания новых решений технологии обработки заготовок и производства готовых деталей. При этом ведущее значение будет уделяться макро- и микрогеометрии - состоянию функциональных поверхностей, способам термообработки и применению покрытий, а также внедрению цифровых технологий
3
136.
Технология горячей ковки
подшипники качения роликовые с коническими роликами
28.15.10.123
требования к технологии:
снижение себестоимости колец подшипников достигается изготовлением заготовок внутреннего и наружного кольца подшипника методом горячей ковки "Башня в ряд" (за одну операцию);
Сниженная отходность и расходы на мехобработку;
оба кольца изготовлены из одной и той же заготовки, что повышает качество подшипника
5 июня 2025 г.
да
обязательно
потенциал совершенствования имеется. Технология позволяет выпускать конкурентоспособную и более качественную продукцию
3
137.
Технология изготовления конического подшипника кассетного типа с телами качения повышенного ресурса
Подшипники качения роликовые с коническими роликами
28.15.10.123
технические характеристики:
нагрузка не менее 23,5 тонн на ось;
назначенный срок службы (ресурс) - 1,6 млн. км. и (или) 16 лет;
количество ремонтов в условиях вагоноремонтных предприятий до утилизации - не менее 1;
межремонтный интервал от производства до ремонта - 8 лет и (или) 1000 тыс. км пробега;
межремонтный интервал от ремонта до утилизации - 8 лет и (или) 600 тыс. км пробега.
Требования к технологии:
локализация - 100 процентов (включая смазку и ролики) сборка подшипника и изготовление его комплектующих;
30 июня 2030 г.
да
обязательно
наиболее перспективными направлениями развития современной технологии производства кассетных подшипников с точки зрения мировой практики являются:
токарная обработка с применением портальных загрузчиков;
термообработка деталей подшипников с возможностью удаленного контроля параметров обработки и отслеживанием технологии термообработки;
шлифовальная обработка с возможностью термокомпенсации при обработке;
нанесение защитного покрытия;
сборка подшипников конвейерного типа. Так же потенциальным развитием предлагаемой технологии могут быть:
использование новых методов закалки для изготовления продукции для других отраслей промышленности из сталей, производимых на территории Российской Федерации, с улучшенными эксплуатационными характеристиками продукции;
новые инновационные профили поверхностей качения подшипников;
испытания и применение новых марок сталей, композитных материалов, а также керамических деталей при производстве продукции. Все вышеперечисленное позволит увеличить ресурс изделия, снизить потери на трение, снизить энергопотребление
3
138.
Технология производства инновационных подшипников качения роликовых, цилиндрических для букс железнодорожного подвижного состава с применением способа термической обработки деталей подшипников на "бейнит"
подшипники качения роликовые для букс железнодорожного подвижного состава
28.15.10.126
технические характеристики роликовых цилиндрических подшипников для букс железнодорожного подвижного состава:
назначенный срок службы - 8 лет и/или назначенный ресурс 800 тыс. км пробега
30 июня 2030 г.
да
обязательно
использование уникальной формы поверхностей качения для уменьшения силы трения дает эффект уже при использовании традиционных материалов при изготовлении подшипников. В дальнейшем преимущества данной технологии могут быть развиты при использовании керамических материалов или новых видов стали
3
139.
Технология нанесения износостойких и коррозионностойких покрытий
подшипники качения комбинированные
28.15.10.130
технические характеристики:
снижение коэффициента трения < 0,1 при осевом движении смещение колец подшипников;
защита от коррозии для различных условий окружающей среды в соответствие стандарту DIN EN ISO 12944-2;
категории коррозионности C1 до C5-м. Требование к технологии:
предотвращение коррозии;
предотвращение прохождения электротока и замедление абразивного износа. покрытие полного подшипника без учета отклонений допусков и технических характеристик
31 декабря 2025 г.
да
обязательно
потенциал совершенствования имеется за счет применения передовых цифровых, интеллектуальных, роботизированных производственных систем для достижения ценовой конкурентоспособности в глобальном масштабе
2
140.
Технологии производства механической коробки переключения передач, сцепления и их компонентов
передачи зубчатые;
передачи винтовые шариковые или роликовые;
коробки передач и прочие переключатели скоростей
28.15.24
требования к выпускаемой продукции:
соответствие требованиям, установленным в ТР ТС 018/2011 (Технический регламент Таможенного союза "О безопасности колесных транспортных средств") для данного вида продукции (при наличии);
соответствие продукции постановлению Правительства Российской Федерации от 20 сентября 2017 г. N 1135 "Об отнесении продукции к промышленной продукции, не имеющей произведенных в Российской Федерации аналогов, и внесении изменений в некоторые акты Правительства Российской Федерации";
соответствие ГОСТ Р 58139-2018 "Системы менеджмента качества. Требования к организациям автомобильной промышленности";
обязательное выполнение всех требований, установленных в разделе "II. Продукция автомобилестроения" приложения к постановлению Правительства Российской Федерации от 17 июля 2015 г. N 719 "О подтверждении производства промышленной продукции на территории Российской Федерации" для соответствующих компонентов
31 декабря 2025 г.
да
обязательно
современная технология имеет потенциал развития. Представленная технология для производства коробок передач, сцеплений и их компонентов, являются современными, а продукт который с помощью данных технологий будет производиться будет конкурентоспособен не только на российском, но и на мировом рынке
3
141.
Технология нанесение износостойких и коррозионностойких покрытий, в том числе алмазоподобных
переключатели скоростей прочие, не включенные в другие группировки
28.15.24.139
технические характеристики:
снижение коэффициента трения < 0,1 при осевом движении смещение колец подшипников;
защита от коррозии для различных условий окружающей среды в соответствие стандарту DIN EN ISO 12944-2;
категории коррозионности C1 до C5-м. Требование к технологии:
предотвращение коррозии;
предотвращение прохождения электротока и замедление абразивного износа. покрытие полного подшипника без учета отклонений допусков и технических характеристик
31 декабря 2025 г.
да
обязательно
потенциал совершенствования имеется за счет применения передовых цифровых, интеллектуальных, роботизированных производственных систем для достижения ценовой конкурентоспособности в глобальном масштабе
2
142.
Технология термической и механическая обработки
двухмассовые маховики, демпферы (включая вязкостные)
28.15.25.110
требования к выпускаемой продукции:
соответствие требованиям, установленным в ТР ТС 018/2011 (Технический регламент Таможенного союза "О безопасности колесных транспортных средств") для данного вида продукции (при наличии);
соответствие продукции постановлению Правительства Российской Федерации от 20 сентября 2017 г. N 1135 "Об отнесении продукции к промышленной продукции, не имеющей произведенных в Российской Федерации аналогов, и внесении изменений в некоторые акты Правительства Российской Федерации";
соответствие ГОСТ Р 58139-2018 "Системы менеджмента качества. Требования к организациям автомобильной промышленности";
обязательное выполнение всех требований, установленных в разделе "II. Продукция автомобилестроения" приложения к постановлению Правительства Российской Федерации от 17 июля 2015 г. N 719 "О подтверждении производства промышленной продукции на территории Российской Федерации" для соответствующих компонентов
31 декабря 2025 г.
да
обязательно
Современная технология имеет потенциал развития и имеет возможности создания на ее основе промышленного производства конкурентоспособной продукции
3
143.
Технология цифрового конструирования и изготовления промышленных печей для обработки металлических материалов
камеры, печи и печные горелки
28.21
требования к технологии:
модель управления тепловым режимом термической печи уровня L2 (расчет температурных полей в объеме и времени для атмосферных печей и для садки);
принцип беспламенного окисления природного газа;
температура не ниже 850 градусов Цельсия;
Образование оксида азота с содержанием не выше 50 мг на м3
1 января 2040 г.
да
неприменимо
технология имеет потенциал в области повышения теплотехнических характеристик и повышения качества обработки материала
1
144.
Технология обогащения медно-порфириевых цинкосодержащих руд
-
07.29.11.120
основой технологии является коллективная флотация с использованием реагенетики, последующая контрольная флотация с получением чернового концентрата, доизмельчения его и селективная фильтрация, несколько перечисток и получение медного концентрата с содержанием меди 20 процентов
31 декабря 2040 г.
да
обязательно
переработка медно-порфириевой руды с содержанием меди привело к дальнейшему совершенствованию процессов флотации и адьюстажных технологий, а также предъявляет повышенные требования к работе аппаратуры на всех этапах получения медного концентрата с достижением высоких показателей по извлечению меди на уровне 85 процентов и ее содержанию 20 процентов в товарном концентрате. Использование системы управлением оптимального измельчения вкупе с современными реагентами обеспечивает устойчивость флотации и стабильность качественных показателей
2
145.
Технология переработки нефелиновых концентратов методом сухого спекания с применением ряда технологических решений в области подготовки сбалансированной, однородной известково-нефелиновой шихты
-
07.29.13.120
применение предложенных инновационных решений приготовления нефелиново-известняковой шихты, включают в себя возможность использования сухого спекания и возможность использования опережающего размола нефелинового концентрата с целью устранения расшихтовки
28 марта 2030 г.
да
неприменимо
при сравнительно небольшом содержании глинозема и высоком содержании кремнезема, применение предложенных инновационных решений позволяет осуществить глубокую переработку нефелинового концентрата с получением глинозема высокого качества и ряда промышленных продуктов. Применение технологии глубокой переработки нефелинового концентрата экономически эффективна, так как инновационная технология позволяет снизить потребление природного газа на 50 процентов по сравнению с существующими производствами
1
146.
Рентгеноспектральный метод сепарации коренных золотосодержащих руд
-
07.29.14.121
максимальное напряжение в реншнговской трубке - 50 кВ;
максимальный ток в реншнговской трубке - 3 мА;
максимальное время непрерывной работы - 8 часов;
производительность - более 5 т/час;
наличие специализированного программного обеспечения для управления сепаратором и реализации методики обогащения
5 июня 2040 г.
да
обязательно
дальнейшее развитие технологии базируется на создании отечественных комплектующих для горнообогатительной промышленности:
рентгеновских трубок и источников излучения на их основе;
детекторов вторичного рентгеновского излучения и рентгеновских спектрометров на их основе;
аппаратов с увеличенной скорости ленты. Также будет продолжена разработка перспективных отечественных методик экспресс-анализа химического состава рентгеноспектральным методом
3
147.
Технология обогащения титан-циркониевых рудных песков
-
07.29.19 08.12.11.120
технология переработки рудных песков состоит из следующих основных частей:
подготовка исходного сырья к обогащению;
первичное обогащение песков с получением чернового коллективного концентрата;
доводка коллективного концентрата с получением кондиционных селективных минеральных концентратов титана и циркония;
обогащение кварцевых песков;
сгущение и фильтрация хвостов обогащения
3 июня 2030 г.
да
неприменимо
технология обогащения титан-циркониевых рудных песков позволит внести существенный вклад в сырьевую безопасность и импортозамещение сырья для цветной металлургии и металлургии редких металлов, сырья для титаномагниевой и стекольной промышленности Российской Федерации для удовлетворения дефицита этого вида сырья на региональных рынках сбыта
2
148.
Глубокое извлечение германия из германийсодержащих углей и отходов горно-металлургического производства
-
07.29.19.292
полная технологическая цепочка получения конечных изделий построена на развивающихся методах извлечения германия в концентрат с последующей его химической переработкой
28 декабря 2040 г.
да
обязательно
развитие современной технологии производства германия обуславливается двумя факторами:
вовлечением в переработку новых, в том числе техногенных источников сырья;
расширение линейки германиевой продукции в связи с растущими требованиями оборонной и гражданской промышленности, как в виде химических соединений, в основном для оптиковолокна, изделий для инфракрасной оптики, электроники и солнечных батарей
3
149.
Технология сжигания германийсодержащих лигнитов с получением возгонов и концентрата германия
-
07.29.19.292
для сжигания германийсодержащих лигнитов используется специально разработанная (усовершенствонная) печь слоевого сжигания. Установлены и выявлены необходимые температурные и газодинамические режимы, способствующие полному переходу германия в улавливаемые возгоны
1 декабря 2030 г.
да
неприменимо
развитие современной технологии с полным обеспечением германиеносным сырьем нужд оборонной и гражданской отраслей промышленности, в которых инфракрасная оптика является драйвером дальнейшего развития
1
150.
Технология производства апатитового концентрата методом флотации
-
08.91.11.111
производство апатитового концентрата методом флотации, разработка системы непрерывного контроля качества руды, поступающей по конвейеру подземного рудника на основе спектрометрических методов анализа с возможностью распределения потоков между обогатительной фабрикой и усреднительным складом;
повышения производительности процесса сушки (исключение - третьего сушильного барабана) за счет снижения влажности кека на этапе фильтрации достигается применением более эффективных фильтротканей и современной системы вакуумирования;
уменьшения потерь и повышение извлечения за счет возврата просыпей в технологический процесс за счет гидросмыва;
достижения качества производимого апатитового концентрата н/м 39 процентов
4 июня 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
потенциал развития указанной технологии состоит в совершенствовании отдельных стадий технологического процесса, организации производства и контроля применения и дальнейшего внедрения конвейерного транспорта вместо техники на дизельных двигателях внутреннего сгорания как на обогатительной фабрике, так и на выдаче руды из подземных выработок
3
151.
Технология производства концентрата апатитового
-
08.91.11.111
процесс производства апатитового концентрата состоит из последовательных основных стадий технологического процесса (дробления, измельчения и флотации добываемой апатит-нефелиновой руды, операций обезвоживания получаемого апатитового концентрата) и вспомогательных процессов (прием руды, отгрузка продукции, хвостовое хозяйство, энергоснабжение, очистка выбросов и стоков и т.д.). При производстве продукции используется замкнутый водооборот
28 марта 2042 г.
да
обязательно
потенциал развития указанной технологии состоит в совершенствовании отдельных стадий технологического процесса, организации производства и контроля:
совершенствование узлов измельчения и рассева, флотации, обезвоживания, очистки отходящих газов, использования сырья различного минералогического состава. Разработанная технология позволяет максимально полно извлекать из руды полезный компонент P2O5, увеличивать производство апатитового концентрата по потребности рынка фосфатного сырья с учетом развития рудно-сырьевой базы
3
152.
Технология производства карналлита, обогащенного галургическим методом
-
08.91.19.161
предлагаемая к реализации технология галургического обогащения обеспечивает производство карналлита с требуемыми техническими параметрами
31 декабря 2040 г.
нет
необязательно, так как в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
карналлит обогащенный предназначен для использования в качестве исходного сырья при производстве металлического магния, магниевой продукции и других целей. Потребители карналлита обогащенного не имеют возможности заменить карналлит, обогащенный иными видами сырья. Это объясняется отсутствием продуктов, которые могли бы быть сравнимы с карналлитом, обогащенным по своим свойствам. Технологии производства магнийсодержащей продукции, реализованные на предприятиях потребителях карналита, основаны на использовании в качестве сырья карналита обогащенного
3
153.
Технология производства хлористого калия методом флотации
-
08.91.19.162
технологии флотационного обогащения калийных руд состоит в возможности переработки руд различного минералогического состава (различие в размере вкраплений основного вещества и содержании нерастворимого остатка).
Для обогащения калийно-магниевых руд с высоким содержанием нерастворимого остатка предложена новая технологическая схема, которая основывается на принципе самотечности процесса, что позволит исключить лишние перекачки пульп, сокращая тем самым протяженность трубопроводов, количество зумпфов и технологических насосов
4 июня 2040 г.
да
необязательно, так как в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
дальнейшее развитие существующих технологий состоит в оптимизации процессов флотационного обогащения и аппаратурного оформления с использованием комбинированной системы флотации (механической и пневмоэжекторой), что позволяет снизить энергоемкость и увеличить извлечение целевого продукта, использование "машинного зрения" для контроля процесса флотации, совершенствование процессов фильтрации и обезвоживания
"3
154.
Технология производства хлористого калия методом флотации
-
08.91.19.190
при реализации данного способа производства используются современные способы и методы оптимизации технологического процесса:
цифровизация процесса производства с применением машинного зрения;
видеофиксация;
анализ при помощи нейронной сети и сопоставление с данными параметров производственного процесса из автоматизированной системы управления технологическими процессами;
разработка и предоставление рекомендаций по оптимальному ведению технологического процесса;
внедрение горно-геологической информационной системы;
ИТ-решение аккумулирует и структурирует в едином трехмерном информационном пространстве горно-геологические данные при отработке месторождения калийно-магниевых солей и позволяет оптимизировать и снизить трудоемкость бизнес-процессов;
использование цифровой системы учета замечаний и дефектов на основе мобильных осмотров технологического оборудования
31 декабря 2040 г.
да
необязательно, так как в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
потенциал развития технологии флотационного обогащения калийных руд выражается в адаптивности технологии к качеству сырья (размер вкраплений основного вещества, содержание основного компонента, содержание и дисперсный состав нерастворимого остатка и других примесей т.д.), что влияет на эффективность технологии. Дальнейшее развитие существующих технологий состоит в оптимизации процессов флотационного обогащения и аппаратурного оформления с использованием колонных флотационных машин и большеобъемных флотационных машин, что позволит достичь увеличения производительности секции флотации и улучшить энергоэффективность на этапе флотации, увеличить селективность и уменьшить расход реагентов
3
155.
Технология производства высококачественной хлопчатобумажной и смесовой пряжи
пряжа хлопчатобумажная (кроме швейных ниток)
13.10.61
для улучшения характеристик смесовых тканей используется натуральная пряжа с высокими гигиеническими свойствами, а также с использованием натуральных волокон льна и хлопка, совместно с использованием химических и котонизированных льняных волокон, что предает ткани необходимую легкость, драпируемость, комфорт в эксплуатации, удобство в уходе и высокие эксплуатационных свойств:
несминаемость, стойкость к истиранию
31 декабря 2030 г.
да
неприменимо
согласно данным исследования "Рынок пряжи в России:
исследование и прогноз до 2023 года", подготовленного маркетинговым агентством ROIF Expert в 2019 году, на российском рынке продолжает доминировать импортная продукция, что является результатом значительного роста объемов импортируемой пряжи на фоне 4-летнего спада производства данной продукции. По итогам 2018 года продажи пряжи на российском рынке впервые перешагнули показатель в 0,8 млрд. долларов, что составило прирост по сравнению с 2017 годом - 20 процентов. Прирост в 2019 году - 30 процентов
В 2020 году также присутсвтует положительная тенденция роста
1
156.
Технология изготовления тканого материала для производства подушки безопасности
ткани текстильные
13.20
продукция производится в соответсвии с требованиями, установленными в правилах Европейской Экономеческой Комиссии ООН N 114 "Единообразные предписания, касающиеся официального утверждения":
модуля подушки безопасности для сменной системы подушки безопасности;
сменного рулевого колеса, оснащенного модулем подушки безопасности официально утвержденного типа;
сменной системы подушки безопасности, устанавливаемой вне рулевого колеса"
1 января 2035 г.
да
обязательно
рынок автомобилей усовершенствуется, большое внимание уделяется безопасности человека. Подушек безопасности в автомобиле становится больше, увеличивается количество датчиков, способных различать удары по силе и характеру, регулирующих не только срабатывание, но и степень раскрытия, соответственно, растут и требования к технологиям производства
3
157.
Технология производства тканей медицинского назначения
ткани медицинского назначения (ткани текстильные)
13.20
разрабатываемые ткани должны иметь возможность применяться в качестве носителя лекарственных препаратов и иметь функцию дозированного высвобождения лекарственных средств
5 июня 2030 г.
да
обязательно
производимая при помощи данной технологии продукция относится к сфере "умного" текстиля. Ткани медицинского назначения могут использоваться в качестве носителей лекарственных препаратов в системе с их контролируемым высвобождением. Для многих категорий больных лекарственные средства, которые передаются через ткань, являются порой единственным способом лечения. Способность такой ткани контролировать высвобождение препарата, обеспечивает конкурентоспособность продукции. Возможность производства тканей медицинского назначения с использованием широкого спектра лекарственных препаратов
2
158.
Технология подготовки к цифровой печати натуральных текстильных материалов
ткани хлопчатобумажные
13.20.2
за счет инновационной технологии подготовки ткани на существующей производственной технологической цепочке сохраняется рабочий ресурс печатных головок цифровой машины при использовании подготовленной к цифровой печати ткани. В связи с использованием данной технологии отсутствуют ограничения в масштабировании производства. Фотографическое качество печати с тонкими и четкими контурами рисунка. Повышенный выход цвета. Высокая устойчивость цвета на ткани при бытовом использовании (стирка, трение)
1 января 2030 г.
да
неприменимо
развитие технологий подготовки и нанесения рисунка обеспечивает рост рынка цифровой печати, который, по прогнозам, составит 400 процентов к 2027 году по отношению к 2020
1
159.
Технология производства суровых и готовых хлопчатобумажных и смешанных тканей различного назначения
ткани хлопчатобумажные
13.20.2
суровые и готовые ткани хлопчатобумажные различного назначения, соответствующие требованиям ГОСТ 29298-2005 "Ткани хлопчатобумажные и смешанные бытовые. Общие технические условия"
1 июня 2027 г.
да
обязательно
возможность выпуска расширенного ассортимента продукции различного назначения из натурального сырья. Высокие конкурентоспособные преимущества на мировом рынке, в связи с использованием натурального сырья
3
160.
Технология производства хлопчатобумажных и смесовых суровых тканей
ткани хлопчатобумажные смешанные бытовые
13.20.20.120
технические характеристики:
суровые хлопчатобумажные и смесовые ткани, соответствующие требованиям ГОСТ 29298-2005 "Ткани хлопчатобумажные и смешанные бытовые. Общие технические условия"
1 июня 2027 г.
да
обязательно
возможность расширения ассортимента производимой продукции на основе использования натуральных и искусственных волокон. Высокие конкурентоспособные преимущества на мировом рынке, в связи с использованием натурального сырья
3
161.
Технология производства синтетических "ароматных" тканей
ткани из синтетических и искусственных комплексных нитей
13.20.31
синтетические "ароматные" ткани должны иметь следующие свойства:
содержание в волокнистом материале ароматических нанокапсул;
устойчивость к воздействию окислителей, влаги, стирке, химчистке;
активация ароматических капсул (выделение скрытых ароматов) в момент движения или соприкосновения;
экологичность
5 июня 2030 г.
да
обязательно
возможность производства с применением указанной технологии предметов одежды, спецодежды, предметов интерьера. Высокие конкурентоспособные преимущества на мировом рынке в связи с использованием натурального сырья
3
162.
Технология производства синтетических тканей с внедренными кремниевыми чипами
Синтетические ткани с внедренными кремниевыми чипами (ткани из синтетических и искусственных комплексных нитей)
13.20.31
синтетические ткани с внедренными кремниевыми чипами имеют следующие свойства:
устойчивость к влаге, чистке, химчистке.
Встроенные в ткань чипы должны реагировать на один или несколько следующих факторов:
свет, температура, влажность, давление, сердечный ритм и прочие аналогичные факторы;
требования к технологии:
самоорганизующаяся сеть чипов, вплетенная в ткань должна
производить обмен данными между чипами и узлами сети;
при выходе из строя какого-либо чипа, данные должны перенаправляться по другим маршрутам
5 июня 2030 г.
да
обязательно
применение данной технологии расширяет возможности использования текстильных материалов в медицине:
определение состояния здоровья пациента в конкретный момент времени и выполнение определенных процедур в соответствии с полученными данными введение соответствующего лекарственного препарата, купирование раны и прочее
2
163.
Технология производства электропроводящих тканей
электропроводящие ткани (ткани из синтетических и искусственных комплексных нитей)
13.20.31
электропроводящие ткани должны обеспечивать следующие свойства:
антистатический эффект;
электромагнитное экранирование;
снятие заряда;
подавление радиополей;
подогрев ткани
5 июня 2020 г.
да
обязательно
возможность производства электропроводящих текстильных материалов для широкого спектра отраслей промышленности. Электропроводящие свойства необходимы при производстве антистатической одежды, обладающей электромагнитным экранированием. Также возможно использование для производства тканей с подогревом. Электромагнитное экранирование становятся важным на фоне увеличения мощностей машин и оборудования, используемых в жизни человека. Ткани с подогревом особо востребованы при покорении и исследованиях особо холодных территорий. Высокая рыночная перспективность продукции обеспечена за счет инновационных свойств тканей и востребованности в перспективных отраслях экономики и направлениях развития
3
164.
Технология производства "самоочищающихся" тканей
ткани суровые из синтетических комплексных нитей
13.20.31.110
самоочищающиеся синтетические ткани должны соответствовать следующим требованиям:
"супергидрофобный" эффект, за счет наноэмульсии, которая формирует на волокнах тонкую трехмерную поверхностную структуру, с которой вода, масло и грязь легко скатываются и смываются
5 июня 2030 г.
да
обязательно
возможность производства "самоочищающихся" синтетических тканей для широкого спектра отраслей промышленности
2
165.
Технология производства тканей с эффектом "хамелеон"
Синтетические ткани с эффектом "хамелеон"
(ткани суровые из синтетических комплексных нитей)
13.20.31.110
синтетические ткани с эффектом "хамелеон" должны иметь способность изменять свой цвет в зависимости от внешних факторов и окружающей среды
5 июня 2030 г.
да
обязательно
продукция относится к сегменту "умный" текстиль. Самый большой сегмент рынка "умного" текстиля приходится на военный сектор - 27 процентов. Продукция востребована в военной секторе и исследовательской среде. Продукция является более совершенной по сравнению с тканями расцветки "камуфляж", т.к. может использоваться на любой географической местности, при любых погодных условиях, может применяться в помещениях
3
166.
Технология антимикробной отделки целлюлозных текстильных материалов серебросодержащими препаратами
изделия текстильные готовые (кроме одежды)
13.92
антиинфекционные текстильные материалы и изделия на их основе должны иметь высокий уровень антимикробной или антивирусной активности в готовом изделии (зона задержки роста грибковых или бактериальных тест-культур на твердых питательных средах - не менее 4 мм) и высокую устойчивость биоцидного действия после многократного проведения операций стирки с обеспечением перманентности свойств.
4 февраля 2030 г.
да
неприменимо
разработанная технология может быть использована для перевязочных средств (создание полифункциональных изделий с комплексом антибактериальных, обезболивающих, лечебных свойств), а так же для использования новых материалов при их производстве (натуральные волокна в частности, лен, и различные виды текстильного носителя - нетканое или трикотажное полотно, ткань)
1
167.
Технология рециклинга крупногабаритных текстильных отходов (матрасов)
синтепон, вторичный поролон, термовойлок (материалы нетканые и изделия из них (кроме одежды)
13.95.1
современная технология должна соответствовать требованиям, указанным в национальном проекте "Экология" (федеральный проект "Комплексная система обращения с твердыми коммунальными отходами в 2018 - 2024 гг.")
1 января 2030 г.
да
обязательно
наблюдается несколько векторов развития данной технологии:
доработка и совершенствование самого оборудования, позволяющие увеличивать мощности загрузки оборудования и технические характеристики производимой вторичной продукции. Обновление комплектующих материалов матрасов влечет увеличение уровня сложности переработки матрасов. В соответствии с этим в дальнейшем этот механизм будет совершенствоваться, и способствовать формированию новых технологий;
создание новых продуктов из вторичного сырья, создание новых производственных линий по разным направлениям (звукоизоляция, строительные материалы, в сельскохозяйственной промышленности и прочее)
2
168.
Технология производства нетканых материалов для изготовления респираторов
материалы нетканые и изделия из них (кроме одежды)
13.95.10
нетканое полотно "Рестекс" и нетканое полотно "Блютекс" должны быть малой поверхностной плотности и обладать защитными свойствами, в том числе биозащитой, химический (в т.ч. аэрозольной) защитой и влагозащитой
1 января 2025 г.
да
неприменимо
современного производства данных материалов и способов отделки в Российской Федерации не существует. В связи с чем респираторный материал импортируется в больших количествах. Также во время развития данной технологии может быть произведена продукция, которая получит широкое распространение в швейной отрасли по производству спецодежды, спортивной верхней одежды
1
169.
Переносная (обратная) технология производства искусственных кож с различными видами пропиток или покрытий
ткани трикотажные пропитанные или с покрытием, не включенные в другие группировки
13.96.14
продукция должна соответствовать следующим требованиям:
относиться к категории трудновоспламеняемых с низкой дымообразующей способностью;
медленное распространение пламени по поверхности (индекс распространения пламени - св. 0 до 20 вкл.);
не выделять токсичные продукты при горении (относиться к группе умеренноопасных);
не должна накапливать на своей поверхности статическое электричество выше 200 В/см;
выдерживать проведение ежедневной сухой и влажной чистки, в т.ч. с использованием моющих и дезинфицирующих средств бытовой химии, ежедневной санитарной обработки, на протяжении всего гарантированного срока службы;
не должна стимулировать рост микрофлоры, особенно патогенной;
не должна способствовать накоплению на поверхности пыли и грязи, для мебельных изделий спецназначения;
дополнительно должна обладать высокой устойчивостью к кислотам, щелочам и медикаментам
31 декабря 2025 г.
да
обязательно
в перспективе возможна разработка более экологичных искусственных кож на био-основе с возобновляемым содержанием 70 - 75 процентов, так же обладающих улучшенными потребительскими свойствами продукта (более высокой мягкостью и устойчивостью к царапинам)
2
170.
Технология производства воздуходержащего материала с полимерным покрытием на тканевой основе
ткани, пропитанные поливинилхлоридной композицией, или с покрытием из поливинилхлорида
13.96.14.110
многослойный материал массой 630 - 1200 г/ м2, представляющий собой тканевую основу с нанесенным на нее с двух сторон полимерным составом, обеспечивающим воздуходержащие свойства. Прочность на разрыв от 280/250 Н, прочность на растяжение от 2800/2500 Н/5 см, адгезивная прочность более 100 Н/5 см. Возможность соединения материала методом склеивания и различными видами сварки. Требования к современной технологии:
производство тканей различной плотности, цифровой контроль нанесения полимера с обоих сторон, возможность выпуска продукции шириной до 3.2 м
31 декабря 2040 г.
да
неприменимо
изменение состава полимерного покрытия ПВХ приведет к развитию современных технологий в направлении увеличения эластичности и срока эксплуатации материалов
1
171.
Технология производства инновационных полимерных мембранных материалов и многослойных тканей на их основе, обладающих защитными свойствами к техногенным и биогенным угрозам
полимерный мембранный материал Многослойные ткани на основе полимерного мембранного материала
(ткани, пропитанные другими полимерными композициями, или с покрытием из других полимеров, прочие, не включенные в другие группировки)
13.96.14.199
разработанные мембранные полимерные материалы должны обладать следующими физико-механическими показателями:
толщина:
от 10 до 100 мкм;
прочность на разрыв: 38/32 МПa;
удлинение при разрыве: 450/650 процентов;
модуль упругости: 70 ~ 100 МПa;
упругое восстановление:
67 - 75 процентов;
коэффициент поверхностного натяжения:
63 - 67 мН/м;
прочность на раздир:
200 ... 350 мН. Многослойные ткани с использованием мембранных материалов должны обеспечивать Барьерные свойства к микробам, бактериям, вирусам, в т.ч. COVID-19:
микробная проницаемость до воздействия дезинфицирующих средств - 0 процентов после воздействия дезинфицирующих средств - 0 процентов
4 июня 2035 г.
да
неприменимо
разработка и внедрение данной технологии позволит создать линейку мембранных материалов, обладающих уникальными свойствами, такими как паропроницаемость, устойчивость к механическим воздействиям, термостабильность, водонепроницаемость, ветрозащита, стойкость при воздействии моющих средств, огнестойкие. Что позволит разрабатывать на их основе новые многослойные материалы по требованиям МЧС России;
нефте-газодобывающей, машиностроительной, легкой и пищевой промышленности
1
172.
Технология производства кордных тканей с повышенными адгезионными свойствами
ткань кордная с повышенными адгезионными свойствами
(ткани кордные из высокопрочного полиамидного волокна)
13.96.15.120
разработанная технология пропитки кордных тканей должна обеспечить следующие технические показатели:
разрывная нагрузка, 211,0 - 289,0 Н;
прочность связи кордной нити с производственной резиновой смесью, 127,0 - 147,0 Н. Метод производства пропитанной кордной ткани заключается в нанесении на поверхность полотна ткани специального водного раствора, с последующей его сушкой и термофиксацией
27 мая 2025 г.
да
обязательно
современная технология пропитки кордных тканей обеспечивает повышенные характеристики прочности ткани и повышенную адгезию ткани к резине в процессе вулканизации при производстве автопокрышек
2
173.
Технология производства фильтровальных тканей для фильтрпрессов
материалы текстильные и изделия технического назначения (включая фитили, калильные сетки газовых фонарей, текстильные шланги, конвейерные ленты и приводные ремни, ситовые ткани и фильтровальные ткани)
13.96.16
технические фильтровальные ткани должны быть повышенной плотности, малой водопроницаемости, повышенной устойчивости к истиранию и механическим воздействиям
1 июля 2023 г.
да
неприменимо
внедрение технологии в производство технических тканей для фильтрпрессов обеспечит импортозамещение в данной отрасли, будет способствовать потенциальному развитию существующего процесса производства в части технического текстиля, а так же обеспечит усиление существующих или появление новых свойств конечного продукта
1
174.
Технология производства натуральной кожи с верхним покрытием из полиуретана
натуральная кожа с верхним покрытием из полиуретана (кожа лаковая ламинированная)
15.11.22.120
основные требования к свойствам промышленной продукции:
морозостойкость до -35 градусов Цельсия;
нетребовательность в уходе;
безопасность (отсутствие искусственного запаха и выделения вредных веществ);
повышенная износоустойчивость, прочность покрытия и нечувствительность к воздействию прямых солнечных лучей;
эластичность покрытия, сохраняемая в течение длительного срока эксплуатации изделий из кожи с полиуретановым покрытием;
высокие гигиенические свойства за счет высокой степени пористости
1 января 2040 г.
да
неприменимо
натуральная кожа с полиуретановым покрытием обладает характеристиками, недостижимыми другими продуктами, такими как прочность и одновременно эластичность, гигиеничность, паропроницаемость. В связи с этим будет расширяться использование данного вида кожи в производстве изделий, подвергающихся экстремальным нагрузкам во время эксплуатации - рабочая, спортивная, детская и подростковая обувь, особо нагруженные элементы галантерейных товаров. Данная технология впоследствии будет совершенствоваться по мере усовершенствования видов полиуретанового покрытия, метода его нанесения, а также новых требований потребителя
1
175.
Технология производства натуральных шлифованных кож с широким спектром эксплуатационных свойств для изготовления обуви и других изделий из кожи
кожа из целых шкур крупного рогатого скота без волосяного покрова
15.11.31.000
продукция должна соответствовать следующим основным требованиям к характеристикам:
прочность, эластичность, устойчивость к трению;
устойчивость к воздействию влаги (гидрофобность), устойчивость к тепловым воздействиям;
гигиенические свойства:
воздухо- и паропроницаемость;
отсутствие выделения вредных веществ
31 декабря 2040 г.
да
неприменимо
развитие технологии будет производиться в направлении расширения ассортимента выпускаемой продукции и новых потребительских свойств для, а также совместно с обновляемым технологическим оборудованием и рынком химических материалов
1
176.
Технология производства обуви литьевого метода крепления подошвы с различными защитными свойствами
обувь защитная и прочая, не включенная в другие группировки
15.20.3
специальная обувь в зависимости от ее защитных свойств должна соответствовать техническим требованиям следующих документов:
ГОСТ 12.4.032-95 "Обувь специальная с кожаным верхом для защиты от действия повышенных температур";
ГОСТ 12.4.033-95 "Обувь специальная с кожаным верхом для предотвращения скольжения по зажиренным поверхностям";
ГОСТ Р 12.4.167-97 "Система стандартов безопасности труда (ССБТ). Материалы пленочные полимерные для средств защиты рук. Метод определения устойчивости к истиранию";
ГОСТ 28507-99 "Обувь специальная с верхом из кожи для защиты от механических воздействий. Технические условия";
ГОСТ Р ЕН ИСО 20345-2011 "Система стандартов безопасности труда (ССБТ). Средства индивидуальной защиты ног. Обувь защитная. Технические требования (Переиздание)". Комбинированный верх продукции должен защищать от механических воздействий, скольжения по зажиренным поверхностям, химических факторов, повышенных температур и общих производственных загрязнений
31 декабря 2030 г.
да
обязательно
развитие технологии возможно в направлении совершенствования компонентного состава двухслойной подошвы, применения новых комплектующих материалов для верхней части обуви, а также промежуточных и внутренних слоев обуви
3
177.
Технология производства из полимерных материалов обуви специального и общего назначения
обувь различная специальная
15.20.32.120
обувь специальная должна соответствовать международным требованиям согласно ГОСТ Р ЕН ИСО 20347-2013 ССБТ "Средство индивидуальной защиты ног".
Обувь специальная. Технические требования" и ТР ТС 019/2011 "О безопасности средств индивидуальной защиты".
Обувь общего назначения должна соответствовать требованиям ТР ТС 017/2011 "О безопасности продукции легкой промышленности" и международным требованиям по ГОСТ ISO 5423-2013 "Обувь литьевая общего назначения из полимерных материалов с подкладкой и без подкладки"
31 декабря 2040 г.
да
неприменимо
развитие технологии будет проходить в направлении разработки новых полимерных составов на основе полиуретана для улучшения потребительских и эксплуатационных свойств продукции, в зависимости от функционального назначения обуви и защитных свойств. Также будет проводиться актуализация дизайна обуви в соответствии с современными тенденциями, что потребует разработки новых колодок и оснастки
1
178.
Технология производства специальной обуви с постоянными антистатическими свойствами
обувь специальная прочая, не включенная в другие группировки
15.20.32.129
специальная защитная антистатическая обувь нового вида должна соответствовать следующим требованиям:
электрическое сопротивления обуви в сухой и влажной атмосфере должно быть в пределах 100 Ком - 1000 Ком;
обладать постоянными антистатическими свойствами независимо от условий окружающей среды, срока эксплуатации и хранения обуви. Физико-механические показатели подошвы, морозоустойчивость и стойкость к химическим веществам должны быть на уровне показателей специальной обуви без антистатических свойств
1 января 2040 г.
да
неприменимо
развитие технологии будет проводиться в направлении совершенствования обуви с использованием новых материалов, расширения сфер применения с учетом развития различных отраслей и их потребностей в обеспечении специальной обуви с постоянными антистатическими свойствами
1
179.
Технология производства фанеры для авто-, вагоно-, контейнеростроения
фанера, панели деревянные фанерованные и аналогичные слоистые материалы из древесины
16.10.10
продукция должна отличаться от обычной фанеры повышенной водостойкостью, износостойкостью и повышенным коэффициентом трения
1 июля 2040 г.
нет
обязательно
в связи с ростом грузоперевозок, растет спрос на облицованную фанеру с повышенными показателями качества и сниженным содержанием токсичных веществ. Фанера предназначена для изготовления полов контейнеров, деталей кузовов автомобилей, стен и полов грузовых вагонов, для использования в пассажирских вагонах
2
180.
Технология исследования и учета пиловочных и пиломатериалов
пиломатериалы хвойных пород
16.10.10.110
Требования к технологии:
применение компьютерной томографии, которая позволяет определять внутренние пороки пиловочных бревен и разрабатывать схемы раскроя, позволяющие повысить качественный выход пиломатериалов
1 января 2030 г.
да
обязательно
технология позволяет рационально использовать древесину в процессе лесопиления, повышать качественный выход пиломатериалов, повышать конкурентоспособность продукции. Широкое применение на лесопильно-деревообрабатывающих предприятиях методов испытаний пиловочных бревен даст возможность создать информационную базу для сертификации продукции и производства, повысить экспортный потенциал предприятий
2
181.
Технология производства облицованной фанеры
фанера ламинированная (облицованная), фанера со специальными свойствами.
16.21.
Продукция должна обладать специальными свойствами и быть облицованна пленкой на основе термореактивных полимеров. Технические характеристики продукции должны быть согласно:
ГОСТ Р 53920-2010 "Фанера облицованная. Технические условия";
ГОСТ 3916.1-2018 "Фанера общего назначения с наружными слоями из шпона лиственных пород. Технические условия";
ГОСТ 3916.2-2018 "Фанера общего назначения с наружными слоями из шпона хвойных пород. Технические условия";
EN 13986;
EN 635-3.
Производимая продукция должна соответствовать современным экологическим стандартам класса E0, E0,5, E1
31 декабря 2069 г.
да
обязательно
возможно развитие характеристик продукции (плотность, отклонения по толщине, изменение содержания формальдегида, улучшение параметров водостойкости, кислотостойкости, атмосферостойкости, прочности и долговечности), в связи с чем продукция является конкурентоспособной
2
182.
Технология производства конкурентоспособных древесных ориентировано-стружечных плит
плиты древесно-стружечные и аналогичные плиты из древесины или других одревесневших материалов
16.21.13.000
требования к продукции должны соответствовать международным и отечественным стандартам
1 января 2030 г.
нет
обязательно
производство древесных ориентировано-стружечных плит продолжит развиваться как товар-заменитель фанеры, а заявленная технология позволит производить современную и высококонкурентную на международном рынке продукцию
2
183.
Технология производства ламинированных древесностружечных плит
ламинированные древесностружечные плиты общего и специального назначений
(плиты древесно-стружечные и аналогичные плиты из древесины или других одревесневших материалов)
16.21.13.000
ламинированные древесностружечные плиты представляют собой древесностружечные плиты, должна быть влаго- огне- и биостойкой и облицованы пленками на основе термореактивных полимеров. В Российской Федерации требования к ЛДСтП регламентируются ГОСТ 32289-2013 "Плиты древесно-стружечные, облицованные пленками на основе термореактивных полимеров. Технические условия"
31 декабря 2069 г.
нет
обязательно
Технология ламинированных древесностружечных плит имеет высокий потенциал развития по следующим причинам:
материал обладает высокой конкурентоспособностью, обусловленной высокой технологичностью производства;
технология активно развивается. Развитие направлено на разработку новых комплектов оборудования, совершенствование технологического процесса, появление новых бумажно-смоляных пленок, появление продукции с улучшенными свойствами поверхности
2
184.
Технология производства древесноволокнистых плит с лакокрасочным покрытием
твердые древесноволокнистые плиты средней плотности с нанесенным на их лицевые поверхности лакокрасочным покрытием
(плиты древесно-волокнистые из древесины или других одревесневших материалов)
16.21.14.000
Требования к материалу регламентируются ГОСТ 8904-2014 "Плиты древесноволокнистые твердые с лакокрасочным покрытием. Технические условия"
31 декабря 2069 г.
нет
обязательно
технология отделки древесноволокнистых плит лакокрасочными материалами имеет высокий потенциал развития по следующим причинам:
материал обладает высокой конкурентоспособностью, обусловленной высокой технологичностью производства;
технология активно развивается. Развитие направлено на разработку новых комплектов оборудования, совершенствование технологического процесса, появление новых бумажно-смоляных пленок, появление продукции с улучшенными свойствами поверхности
3
185.
Технология производства ламинированных древесноволокнистых плит средней плотности
Плиты древесноволокнистые сухого способа производства, средней плотности (или плиты древесные моноструктурные), облицованные пленками на основе термореактивных полимеров (или ламинированные плиты)
16.21.14.000
ламинированные древесноволокнистые плиты средней плотности представляют собой древесноволокнистые плиты, изготовленные сухим способом, имеющие плотность 600 - 800 кг/м3, облицованные пленками на основе термореактивных полимеров (или бумажно-смоляными пленками).
В Российской Федерации требования к ламинированным древесноволокнистым плитам средней плотности регламентируются ГОСТ 32687-2014 "Плиты древесноволокнистые сухого способа производства, облицованные пленками на основе термореактивных полимеров. Технические условия"
31 декабря 2069 г.
нет
обязательно
производство ламинированных древесноволокнистых плит средней плотности имеет высокий потенциал развития по следующим причинам:
материал обладает высокой конкурентоспособностью, обусловленной высокой технологичностью производства;
технология активно развивается. Развитие направлено на разработку новых комплектов оборудования, совершенствование технологического процесса, появление новых бумажно-смоляных пленок, появление продукции с пониженной токсичностью и с улучшенными свойствами поверхности
2
186.
Технология производства ламинированных напольных покрытий на основе древесноволокнистых плит сухого способа производства
ламинированные напольные покрытия на основе древесноволокнистых плит сухого способа производства (плиты древесно-волокнистые из древесины или других одревесневших материалов)
16.21.14.000
продукция представляет собой ламинированные напольные покрытия, изготовленные из облицованных пленками на основе термореактивных полимеров древесноволокнистых плит средней или высокой плотности, или плит древесных моноструктурных. Требования к промышленной продукции установлены ГОСТ 32304-2013 "Ламинированные напольные покрытия на основе древесноволокнистых плит сухого способа производства. Технические условия"
31 декабря 2069 г.
нет
обязательно
производство напольных покрытий из ламинированных древесноволокнистых плит сухого способа изготовления имеет высокий потенциал развития по следующим причинам:
материал обладает высокой конкурентоспособностью, обусловленной высокой технологичностью производства;
технология активно развивается. Развитие направлено на разработку новых комплектов оборудования, совершенствование технологического процесса, появление новых бумажно-смоляных пленок, появление продукции с пониженной токсичности и с улучшенными свойствами поверхности
2
187.
Технология производства декоративных панелей для стен на основе древесноволокнистых плит сухого способа производства
панели декоративные для стен на основе древесноволокнистых плит сухого способа производства
16.21.14.000
декоративные панели для стен, представляют собой полутвердую древесноволокнистую (моноструктурную) плиту сухого способа производства, плотностью 650 - 950 кг/м с профилированными боковыми кромками и облицованную с одной стороны декоративной бумагой. Требования к продукции установлены в ГОСТ 32297-2013 "Панели декоративные для стен на основе древесно-волокнистых плит сухого способа производства. Технические условия"
31 декабря 2069 г.
нет
обязательно
производство декоративных панелей для стен на основе ламинированных древесноволокнистых плит сухого способа изготовления имеет высокий потенциал развития по следующим причинам:
материал обладает высокой конкурентоспособностью, обусловленной высокой технологичностью производства;
технология активно развивается. Развитие направлено на разработку новых комплектов оборудования, совершенствование технологического процесса, появление новых бумажно-смоляных пленок, появление новых исходных продуктов с пониженной токсичности и с улучшенными свойствами поверхности
2
188.
Технология производства фанеры, отделанной лакокрасочными материалами с ультро-фиолетовым отверждением
фанера, панели деревянные фанерованные и аналогичные материалы слоистые из древесины
16.21.12
фанера, склеенная из листов шпона и отделанная лакокрасочными материалами с ультрофиолетовым отверждением для повышения ее качества
1 июля 2040 г.
нет
обязательно
внедрение новых для России технологий, позволит повысить потребительские качества фанеры для рынков производства мебели и детских площадок. Данная фанера отличается повышенным сроком службы при использовании водостойких и атмосферостойких лакокрасочных материалов при многократном нанесении
2
189.
Технология производства плитных панелей из цельной древесины
плиты клееные из пиломатериалов с перекрестным расположением слоев.
16.23.1
многослойные плиты изготавливаются из строганых пиломатериалов (ламелей), в том числе соединенных по длине на зубчатый шип, в каждом слое пиломатериалы склеены по кромке;
минимальное количество слоев - 3. плотность древесины для несущих конструкций - не менее 500 кг в м3;
требования к основным техническим характеристикам (свойствам) промышленной продукции должно соответствовать ГОСТ Р 56706-2015 "Плиты клееные из пиломатериалов с перекрестным расположением слоев"
1 июля 2040 г.
да
обязательно
многослойные плиты являются перспективным материалом для деревянного домостроения, со идентичными с древесиной достоинствами при ее применении в строительстве. Производство данных плит является энергоэффективным. Развитие деревянного домостроения в стране потребует увеличения объемов производства строительных материалов из древесины. Многослойные плиты и технологии их производства являются одними из эффективных способов для развития малоэтажной строительной индустрии
2
190.
Технология утилизации древесных отходов с получением возобновляемого топлива
пеллеты или древесные гранулы (гранулы топливные (пеллеты) из отходов деревопереработки)
16.29.14.192
пеллеты или древесные гранулы - гранулированный вид твердого топлива цилиндрической формы, из спрессованных отходов деревообрабатывающей промышленности. Объем углекислого газа не должен привышать объем, образующийся при естественном способе разложения древесных отходов;
влажность (8 - 10 процентов)
11 июля 2025 г.
нет
обязательно
получение пеллет из древесных отходов основного производства - получение пеллет из древесных отходов основного производства является эффективным способ ом утилизации таких отходов, с возможностью дальнейшей монетизации. Ориентировать производство стоит на европейский рынок, т.к. в России существует ограниченный спрос на древесные гранулы
2
191.
Технология производства целлюлозы древесной, натроной или сульфатной
целлюлоза древесная и целлюлоза из прочих волокнистых материалов
17.11.1
показатели качества готовой продукции должны соответствовать показателям качества продукции изложенными в:
ГОСТ 28172-89 "Целлюлоза сульфатная беленая из смеси лиственных пород древесины. Технические условия"
ГОСТ 9571-89 "Целлюлоза сульфатная беленая из хвойной древесины"
1 января 2041 г.
да
обязательно
В пользу потенциала развития выбранной современной технологии производства беленных видов целлюлозы необходимо отметить:
сырьем для производства продукции является древесина лиственных и хвойных пород, что относится к видам возобновляемого сырья;
использование сульфатного способа производства предоставляет возможность регенерации химикатов;
Потенциал развития заявленной технологии можно оценить, как очень высокий, что связано, в первую очередь, с заменой пластиковой упаковки на упаковку из различных видов растительного возобновляемого сырья.
3
192.
Производство товарной целлюлозы методом непрерывной варки "Compact Coocking G2" c использованием пропиточной камеры "ImpBin", отбелкой целлюлозы с использованием ECF технологии и 4-х ступенчатой системой очистки промышленных сточных вод (с использованием физико-химической очистки на флотаторах, 2-х фильтров с активированным углем и доочистки на 4-х песчаных фильтрах (технология Actiflo Carb)
беленая хвойная сульфатная целлюлоза;
беленая лиственная сульфатная целлюлоза (целлюлоза древесная натронная или сульфатная, кроме растворимых сортов)
17.11.12
продукция должна соответствовать общим требованиям к беленой хвойной сульфатной целлюлозе:
белизна (яркость), не менее, 89 процентов по ISO;
сорность (содержание примесей), не более, 6 мм2/кг;
средняя длина волокна, мм, 2,1 - 2,4 мм;
кислотность (ph водной вытяжки), 5 - 7;
энергия, затрачиваемая на размол до достижения индекса растяжимости (разрыва) 70 Нм/г, 90 - 120 кВт·ч/т.;
масса 1 м2 (листа товарной целлюлозы), 850 - 1150 г;
влажность от 8 до 12 процентов;
вязкость, не менее, 650 мл/г;
применительно к беленой лиственной сульфатной целлюлозе:
белизна (яркость), не менее, 89 процентов по ISO;
сорность (содержание примесей), не более, 6 мм2/кг;
средняя длина волокна, 0,85 - 1,05 мм;
содержание экстрактивных веществ, не более, 0,25 процентов;
кислотность (ph водной вытяжки), 5 - 7;
зольность, не более, 0,4 процентов;
энергия, затрачиваемая на размол до достижения индекса растяжимости (разрыва) 70 Нм/г, 30 - 60 кВт ч/т;
масса 1 м2 (листа товарной целлюлозы) от 850 до 1150 г;
влажность от 8 до 12 процентов;
вязкость - не менее 650 мл/г
31 декабря 2040 г.
да
обязательно
Современная технология товарной целлюлозы методом непрерывной варки "Compact Coocking G2" c использованием пропиточной камеры "ImpBin", отбелкой целлюлозы с использованием ECF технологии и 4-х ступенчатой системой очистки промышленных сточных вод (с использованием физико-химической очистки на флотаторах, 2-х фильтров с активированным углем и доочистки на 4-х песчаных фильтрах (технология Actiflo Carb) является в настоящее время одной из двух наиболее перспективных и имеющих международный потенциал развития
2
193.
Технология производства ролевой распушенной (флафф) беленой сульфатной целлюлозы методом непрерывной варки в установке Камюр с использованием схемы отбелки по технологии ECF
Ролевая распушенная (флафф) целлюлоза (целлюлоза древесная натронная или сульфатная, кроме растворимых сортов)
17.11.12
ролевая распушенная (флафф) целлюлоза является современной разновидностью товарной целлюлозы, выпускаемой в форме рулонов (ролей). Ролевая распушенная (флафф) целлюлоза должна быстро и в наиболее полном объеме впитывать жидкость и доставлять ее к супер абсорбенту;
технические требования к товарной ролевой флафф целлюлозе должны соответствовать:
влажность:
не более 8,5 процентов;
белизна - не менее 87 процентов;
масса на 1 м2 (полотна в рулоне) от 650 до 850 г.;
абсолютное сопротивление продавливанию:
не более 1500 - 2500 кПа;
толщина не менее 1,1 мм;
содержание экстрактивных веществ, экстрагируемых хлористым метиленом, не более 0,25 процентов
31 декабря 2050 г.
да
обязательно
собственное производство флафф-целлюлозы в Российской Федерации отсутствует. Сведения о потенциале развития предлагаемой современной технологии получения ролевой флафф целлюлозы, являются объективными и свидетельствуют о крайней необходимости внедрения данной технологии, как с позиций импортозамещения, так и реализации заявленного направления стратегии научно-технологического развития Российской Федерации. Следует отметить, что общая емкость внутреннего рынка беленой товарной целлюлозы в Российской Федерации (без учета флафф целлюлозы) в 2019 году составила около 550 тыс. тонн. При этом импорт различных видов целлюлозы в Российской Федерации в период 2016 - 2019 годов непрерывно возрастал. В 2019 году отмечен почти двукратный рост импорта хвойной сульфатной беленой целлюлозы и эвкалиптовой целлюлозы по сравнению с предыдущим годом. Более 80 процентов этого прироста обеспечили всего два крупнейших импортера целлюлозы. Также отмечается
2
существенный (свыше 3 тыс. тонн в 2019 году и 1 490 тонн в 1 кв. 2020 г.) импорт беленой хвойной целлюлозы из Финляндии. Это обусловлено вводом в эксплуатацию мощностей по производству санитарно-гигиенических видов бумаги в Калужской области. Потребление распушенной целлюлозы в Российской Федерации в 2016 - 2019 годах продолжало расти, хотя темпы роста ниже отмечавшихся в период до 2017 года. Прирост в 2019 году составил около 8 процентов. По результатам 2020 года ожидается существенный (до двукратного) мировой рост производства флафф целлюлозы и продукции с ее использованием (прежде всего в больничном сегменте), что безусловно обусловлено продолжающейся пандемией новой коронавирусной инфекции. На этом фоне создание новой технологии и производство ролевой распушенной флафф целлюлозы переходит в разряд критически важных задач на уровне обеспечения национальной безопасности Российской Федерации
194.
Технология производства древесной беленой и небеленой химико-термомеханической массы
масса древесная, получаемая механическим способом;
полуцеллюлоза древесная;
целлюлоза из прочих волокнистых материалов, кроме древесины
17.11.14
растительное волокно, получаемое в результате механической и химической обработки древесины, используется в производстве бумаги и картона как самостоятельное сырье, а также в качестве сырьевого компонента, не используются серосодержащие химикатов для пропитки щепы, что исключает выбросы серосодержащих веществ
1 июля 2050 г.
да
обязательно
реализация проекта позволит расширить базу полуфабрикатов для производства различного вида упаковочных бумаг и картонов. При этом использование данной технологии позволяет сократить потребление воды примерно в 10 раз, а выход из древесины увеличить в 2 раза выше, чем у целлюлозы
2
195.
Технология получения термомеханической массы с использованием технологии для литых упаковочных изделий (ложементов)
ложементы, изделия литые из волокнистых полуфабрикатов (масса древесная, получаемая механическим способом)
17.11.14.110
ложементы должны обладать следующим комплексом свойств:
биоразлагаемость - материал полностью разлагается в естественных условиях без дополнительных затрат или может быть переработан повторно;
безопасность - натуральный материал без острых краев, выдерживает перепады температур, обеспечивая сохранность товаров;
конкурентоспособность - дешевле аналогов упаковки из вспененного полистирола. Ложементы должна обеспечивать высокую прочность и жесткость конструкций любых форм, высокой способностью к литью и принимать любые формы
31 декабря 2040 г.
да
обязательно
ложементы изготавливаются из макулатуры, безвозвратных отходов сортирования небеленой целлюлозы (сучки и непровар), а также механической массы. Имеют много областей использования, от упаковки продуктов питания (в первую очередь ягоды, фрукты и овощи) до различных держателей и поддонов. Например, стаканов, супниц и пр. для сервиса "еда на вынос". Отличаются невысокой стоимостью, экологической безопасностью производства, легкой перерабатываемостью, биологической разлагаемостью. Изготовление ложементов из волокнистого, в первую очередь вторичного сырья - это мировой тренд, отвечающий растущей ответственности общества, озабоченного истощением природных ресурсов и ростом количества отходов
2
196.
Технология получения термомеханической массы для газетной бумаги повышенной массоемкости (пухлости)
бумага для печати, книжно-журнальной и пр. продукции (бумага для печати прочая)
17.12.14.119
производимая бумага должна иметь следующие технические характеристики:
невысокую белизну - 60 процентов (+/- 1 процент);
состоять из 100 процентов термомеханической массы;
шероховатость;
пористость;
пухлость;
бумага пухлая, относится к разновидностям газетной бумаги, перечень нормируемых характеристик сформирован на основе требований ГОСТ 6445-74 "Бумага газетная. Технические условия"
31 декабря 2030 г.
да
обязательно
Потенциал получения термомеханической массы с использованием данной технологии очевиден. Разработано несколько модификаций технологии в зависимости от потребностей конкретного производства. Варьирование основных параметров, продолжительность пропарки, давление и температура пара позволили реализовать разные задачи и получать волокнистые полуфабрикаты с отличными друг от друга заданными свойствами. Например, вариант с получением высоких оптических свойств и лучшей делимостью массы сопровождается снижением удельного расхода электроэнергии примерно на 15 процентов (с 2200 до 1900 кВт·ч/т в.), этот вариант позволит использовать термомеханическую массу в белых видах бумаги, в том числе различных упаковочных бумагах с разной степенью белизны. Бумага из такого полуфабриката будет отличаться повышенной пухлостью и дешевизной. Бумага для печати пухлая является разновидностью газетной бумаги, пользуется лучшим спросом у полиграфистов, по сравнению со стандартной газетной бумагой. Сегодня, все крупные производители газетной бумаги в России осуществили переход производства со стандартной газетной бумаги на пухлые виды бумаги и бумагу повышенной белизны
2
197.
Технология производства термомеханической массы при помощи RTS технологии
бумага-основа для импрегнирования и (или) нанесения защитных покрытий (бумага-основа, кроме бумаги-основы для обоев)
17.12.14.150
бумага-основа для импрегнирования и (или) нанесения защитных покрытий должна обладать равномерным профилем по толщине и влажности, для равномерного нанесения пропитки и (или) покрытия. Требования к готовой продукции определяются областью использования готовой продукции и требованиями потребителя
31 декабря 2035 г.
да
обязательно
Потенциал получения термомеханической массы с использованием данной технологии очевиден. Разработано несколько модификаций технологии в зависимости от потребностей конкретного производства. Варьирование основных параметров, продолжительность пропарки, давление и температура пара позволили реализовать разные задачи и получать волокнистые полуфабрикаты с отличными друг от друга заданными свойствами. Например, вариант с получением высоких оптических свойств и лучшей делимостью массы сопровождается снижением удельного расхода электроэнергии примерно на 15 процентов (с 2200 до 1900 кВт·ч/т в.), этот вариант позволит использовать термомеханическую массу в белых видах бумаги, в том числе различных упаковочных бумагах и бумагах специального назначения
2
198.
Технология производства термомеханической массы по технологии RTS для изготовления упаковочной бумаги
бумага для ручной и машинной упаковки продуктов и различных изделий
17.12.14.180
технические условия продукции:
прочность при растяжении, белизна, жиростойкость, поверхностная впитываемость воды при одностороннем смачивании, шероховатость по Бендтсену лицевой стороны, влажность должны соотвествовать ГОСТ Р 57637-2017 "Бумага тонкая жиростойкая для упаковки пищевых продуктов. Общие технические условия" и требованиям ТР ТС 005/2011 (Технический регламент Таможенного союза "О безопасности упаковки"). Бумага в соответствии с указанным ГОСТ должна иметь массу от 30 до 60 г/м2 Для достижения заявленного значения белизны термомеханическая масса, полученная по технологии RTS должна дополнительно отбеливаться
31 декабря 2035 г.
да
обязательно
Разработано несколько модификаций технологии в зависимости от потребностей конкретного производства. Варьирование основных параметров, продолжительность пропарки, давление и температура пара позволили реализовать разные задачи и получать волокнистые полуфабрикаты с отличными друг от друга заданными свойствами. Например, вариант с получением высоких оптических свойств и лучшей делимостью массы сопровождается снижением удельного расхода электроэнергии примерно на 15 процентов (с 2200 до 1900 кВт·ч/т в.), этот вариант позволит использовать термомеханическую массу в белых видах бумаги, в том числе различных упаковочных бумагах с разной степенью белизны
2
199.
Технология производства бумаги-основы для производства санитарно-гигиенических изделий
Бумага-основа санитарно-гигиенического назначения:
бумага-основа туалетная;
бумага-основа полотенечная;
бумага-основа салфеточная;
бумага-основа для носовых платочков
17.12.20.110
бумага-основа санитарно-гигиенического назначения - тонкая, микрокрепированная (крепированная) бумага массой в диапазоне 12 - 40 г.
Классифицируется по маркам, в соответствии с ее назначением, видом и качеством. В отечественной номенклатуре стандарт, регламентирующий требования к тонкой бумаге, находится в разработке. Поэтому отечественные производители ориентируются на требования потребителей и международных стандартов.
Основными характеристиками качества являются показатели прочности при растяжении, впитывающие свойства. Для высококачественных видов дополнительно нормируется показатель белизны бумаги. Перечень показателей определяется назначением, массой бумаги и требованиями потребителя
31 декабря 2030 г.
нет
обязательно
по результатам 2020 г., учитывая мировую пандемию, ожидается двукратный рост спроса на одноразовые изделия санитарно-гигиенического назначения не только для розничного массового потребления, но и в первую очередь для обеспечения национальной безопасности населения в рамках госзаказа в медицинских учреждениях и пр., т.е. данная технология может быть отнесена к критически важным.
В этом Ключе потенциал развития современных отечественных производств бумаги и изделий санитарно-гигиенического назначения можно оценивать как высокий и очень высокий
2
200.
Технология производства крафтлайнера
картон тарный небеленый, немелованный
17.12.3
базовые технические характеристики картоноделательной машины - обрезная ширина и максимальная скорость работы, компоновка основных частей (формующей, прессовой и сушильной) свидетельствуют о перспективе создания самой высокопроизводительной и современной единичной производственной линии для выработки крафт-лайнера в России. Технические характеристики:
поверхностная впитываемость воды:
25 - 30 г/м3;
гарантированное минимальное значение пористости по Гюрелю - 60;
белизна - 14 процентов - 17 процентов;
влажность - 7 процентов - 9 процентов
1 января 2041 г.
да
обязательно
потенциал развития современной технологии производства крафт-лайнера чрезвычайно высок. Можно ожидать появления на российском и международном рынках нового высококачественного крафт-лайнера из первичных волокон и способной к адаптации под требования потребителей технологии
3
201.
Производство термомеханической массы по технологии для изготовления флютинга
бумага для гофрирования регенерированная и прочая бумага для гофрирования
17.12.34
техническая спецификация бумаги для гофрирования из 100 процентов термомеханической массы в диапазоне массы 60 - 100 г/м2. Перечень технических характеристик должен ч соответствовать рекомендованным перечнем характеристик, согласно ГОСТ 53206-2008 "Бумага для гофрирования", но при этом быть адаптирован к рекомендациям стандарта Конфедерации Европейской бумажной промышленности CEPI. Принципиальное отличие CEPI от ГОСТ, это переход:
во-первых, от абсолютных значений показателей к их индексам;
во-вторых, к двум наиболее важным показателям для оценки качества флютинга - это сопротивление сжатию короткого образца и сопротивление плоскостному сжатию
31 декабря 2035 г.
да
обязательно
заявленная легкая и ультралегкая бумага для гофрирования является перспективным продуктом. На рынке тароупаковки широко представлена бумага для гофрирования массой от 80 г/м2. Данная продукция может способствовать развитию технологии производства микрогофрокартона в России с профилем гофры E, F и N с небольшими высотой и шагом, что обеспечивает ровную поверхность и высокую жесткость тары, а также позволяет проводить полиграфическую обработку самого гофрокартона
2
202.
Технология производства антибактерицидной бумаги
бумага с антимикробными свойствами для пищевой, фармацевтической промышленности
17.12.34.000
бумагу изготавливают согласно ГОСТ Р 53206 "Бумага для гофрирования" с добавлением, путем распыления, биоцидной композиции "Аргодез". Продукция должна соответствовать ТУ 17.12.72-005-10882662-2017 "Антибактерицидная бумага"
10 ноября 2036 г.
да
обязательно
при производстве бумаги из макулатуры используется сырье, прошедшее цикл (или несколько) циклов использования и контактировавшее с окружающей средой, продуктами деятельности человека, возможно, с продуктами деструкции пищевых и других органических продуктов. Поэтому антибактериальная обработка является необходимым этапом производства упаковочной бумаги из макулатуры. Несмотря на некоторое увеличение стоимости продукции, она повышает биологическую безопасность продуктов питания на стадиях транспортировки и хранения. Технология имеет потенциал для развития и может стать обязательной для упаковки пищевой, сельскохозяйственной и медицинской продукции
2
203.
Технология производства бумаги, пропитанной карбамидоформальдегидными или карбамидомеламиноформальдегидными смолами
бумага декоративная, пропитанная карбамидоформальдегидной или карбамидомеламиноформальдегидной смолой (бумага, картон, вата целлюлозная и полотно из целлюлозных волокон мелованные с пропиткой, покрытием, окрашенной поверхностью или с отпечатанными знаками (рисунком), в рулонах или листах)
17.12.77
промышленная продукция представляет собой бумагу декоративную, пропитанную синтетическими (карбамидоформальдегидными или карбамидомеламинформальдегидными) смолами с неполной степенью отверждения. Технические характеристики продукции должны соответствовать характеристике бумаги с глубоко степенью отверждения смолы
31 декабря 2050 г.
нет
обязательно
в настоящее время в Российской Федерации данные материалы не производятся. Поэтому имеется большой потенциал для развития для развития данной технологии в России. Декоративные бумаги, пропитанные карбамидоформальдегидными или карбамидомеламинформальдегидными смолами с неполной степенью отверждения, применяются для облицовки поверхностей, чаще всего, в производстве ламинированных древесно-волокнистых и древесно-стружечных мебельных плит, обеспечивая внешний вид, водостойкость и прочность поверхности. Данная продукция соответствует стандартам безопасности. Обеспечение отечественной мебельной промышленности облицовочными материалами является важной задачей и способствуют импортозамещению. Применение современных автоматизированных технологий для выпуска данного вида продукции является необходимым и обязательным условием
2
204.
Технология многослойного коробочного картона для производства потребительской упаковки широкого назначения
картон коробочного типа с двухсторонним или односторонним мелованием
17.12.79.000
к коробочному картону нормируются преимущественно следующие характеристики:
масса, влажность, толщина, жесткость при изгибе в машинном и поперечном направлении (по методу Табера), шероховатость лицевой и оборотной стороны листа (по методу Паркера, глянец (гладкость) лицевой стороны, сопротивление расслаивания (по методу Скотт-Бонд), белизна (яркость) лицевой и оборотной стороны листа, Количественные характеристики устанавливаются для каждого значения массы 1 м2 Могут быть установлены и дополнительные технические характеристики.
31 декабря 2035 г.
да
обязательно
потенциал развития современной технологии производства картона определяется преимущественно направлениями и динамикой основных отраслей-потребителей продукции:
пищевой, легкой, фармацевтической, IT-индустрии, строительной и др. Области и объемы использования индивидуальной и групповой упаковки из коробочного картона стабильно развиваются
2
205.
Технология производства влагопрочных мешков для листвы и садового мусора
мешки и сумки бумажные
17.21.12
требования к продукции соответствуют требованиям к влагопрочной мешочной бумаг, которые представлены в ГОСТ 2228-81 "Бумага мешочная".
31 декабря 2035 г.
да
обязательно
производство биоразлагаемой упаковочной бумаги - общемировая тенденция в сфере упаковки. Ее изготовление обходится дешево, а экологические преимущества очевидны. Все больше предприятий и организаций предпочитают ответственный подход в бизнесе и ориентируются на сохранение природных ресурсов и минимизацию негативного воздействия на окружающую среду от своей деятельности, что определяет рост спроса на "Зеленые технологии", что особенно актуально в сегменте упаковки. Технология получения влагопрочных мешков широко и давно известна и постоянно совершенствуется
2
206.
Технология производства санитарно-гигиенических изделий из бумаги
санитарно-гигиенические изделия:
туалетная бумага;
платки носовые;
салфетки и полотенца;
скатерти и салфетки
17.22.11
требования к продукции должны соответствовать ГОСТ Р 52354-2005 "Изделия из бумаги бытового и санитарно-гигиенического назначения"
31 декабря 2030 г.
нет
обязательно
на основе бумаги бытового и санитарно-гигиенического назначения выпускается обширный ассортимент изделий, предназначенных для обеспечения жизнедеятельности человека. Основными видами изделий являются - туалетная бумага, салфетки (столовые, сервировочные, косметические для снятия макияжа, гигиены лица, с пропиткой - антисептические, освежающие, гигиенические, репелентные и т.д.);
полотенца (для лица и рук, кухонные и т.д.);
платки носовые;
скатерти и другие виды изделий, аналогичные перечисленным по своему функциональному назначению. Объем потребления средств личной гигиены в России пока существенно отстает от уровня развитых стран. Прогнозируется рост этого сегмента на 6 процентов - 8 процентов в год до 2025 года. Рынок продукции, созданной по данной технологии, особенно премиум-класса, имеет большой потенциал для роста
2
207.
Технология производства биоразлагаемой посуды и упаковки для пищевых продуктов из целлюлозного волокна методом термического формования
одноразовая биоразлагаемая посуда и упаковка для пищевых продуктов из целлюлозного волокна
17.22.13
основные технические характеристики продукции должны отвечать следующим требованиям:
исходное сырье:
целлюлоза хвойная либо лиственная (возможна смесь, требует согласования с заводом-производителем оборудования). Длина волокна 0,8...2,5 мм. Сульфатная, изготовлена без молекулярного хлора и гипохлорита по стандарту EFC (Elemental Chlorine Free). Сульфитная и лиственная сульфатная целлюлоза - по TCF (Total Chlorine Free) - технологии. Химические добавки:
для придания влагостойких свойств конечному продукту, в целлюлозную массу (в очень малом количестве) добавляется химический агент на основе фтора. Требования по влаго-маслостойкости:
Вода 100 - 1 час без утечки (влагостойкая добавка:
3 процентов);
масло 100 - 1 час, без утечки (маслостойкая добавка 0,75 процентов-1 процентов);
1 января 2035 г.
да
обязательно
заявленная технология обладает существенным потенциалом развития в условиях постепенного нормативного ограничения производства и использования подобных одноразовых изделий для пищевых продуктов из пластиковых материалов. Потенциал развития также поддерживается наличием источников сырья и растущим рынком. Технологическая инновационность, заложенная в данном способе производства продукции, обеспечивает высокую конкурентоспособность конечного продукта за счет автоматизации производственных процессов, интеллектуальной системы управления, масштабируемости производства, доступности всех видов используемого сырья, оригинальности и эффективности технологических решений, реализованных производителем оборудования. Вместе с тем, следует учесть, что сульфитная и лиственная сульфатная целлюлоза по технологии TCF (Total Chlorine Free) отечественными предприятиями не производится. Импорт подобного сырья может привести к существенному удорожанию стоимости изделий, планируемых к выпуску с помощью предлагаемой технологии
2
208.
Технология производства виниловых обоев с использованием ПВХ-пластизолей, разработанных и произведенных на предприятии
обои виниловые
17.24.1
требования к основным техническим характеристикам (свойствам) промышленной продукции:
отсутствие пятен, полос и контрастных включений; ограничения на смещение отдельных элементов рисунка;
ограничения на несовмещение контура печатных элементов рисунка и рельефа тиснения по рисунку; ограничения на малозаметные подтеки, пятна и непропечатки рисунка.
Процесс разработки пластизоля состоит из следующих этапов:
Проектирование рецептур;
Закупка сырьевых образцов;
Лабораторная сборка рецептур и определение качественных показателей полученных модельных пластизолей (по плотности, вязкости, зернистости);
Лабораторная оценка технологических параметров пластизолей;
Изготовление выкрасок на режимах, приближенных к режимам работы производственной линии;
Определение характеристик полученного пластизоля в опытной партии готовой продукции - определение кратности пенообразования, степени белизны, показателей твердости. Доработка рецептур до получения удовлетворительного результата;
Комплексная оценка качества обоев, выпущенных с применением опытного пластизоля;
Запуск рецептуры пластизоля в производственную линию. При этом, в дальнейшем, необходимо будет указать количественные технические характеристики предлагаемой к производству продукции
10 июня 2030 г.
нет
обязательно
разрабатываемый в рамках настоящего технологического направления пластизоль в стандартном исполнении будет также содержать аддитивы, диспергаторы и порофоры, подбор формул которых в каждом индивидуальном случае позволит в полном объеме управлять технологическими и физико-механическими свойствами конечного пластизоля.
С применением разрабатываемых рецептур ПВХ-пластизолей можно создавать отделочные материалы, прежде всего обои и линолеум, с самыми разнообразными рисунками, в том числе с рисунками, имитирующими поверхности дерева, камня, кожи и других природных материалов
3
209.
Технология цифровой печати на обоях
обои
17.24.11.110
требования к технологии:
Прием макетов осуществляется в цветовых пространствах RGB, CMYK, Grayscale.
Разрешение в пределах 150 - 300 dpi
Требования к конечной продукции:
высокая стойкость к истиранию, выгоранию
30 июня 2029 г.
нет
обязательно
потенциал развития данной технологии можно оценить, как высокий. Принципиально данная технология обладает перспективностью, поскольку имеет место повсеместный переход на цифровые методы печати, и, конечно. При росте благосостояния населения Российской Федерации, потребление обоев повышенного качества с рисунком, нанесенным цифровым методом, будет расти. Данная технология имеет определенную рыночную перспективность и конкурентоспособность на общероссийском уровне промышленной продукции. В Российской Федерации существует объективная необходимость создания производств, использующих данные технологии, в том числе с позиций импортозамещения. Возможность производства на основе предлагаемой технологии нанесения рисунка на обои, конкурентоспособного на Российском уровне, можно оценить, как высокую. Производство на основе современной технологии производства обоев с рисунком, нанесенным методом цифровой печати, конкурентоспособной на Российском и мировом уровне, можно оценить, как высокую
3
210.
Технология производства новых и улучшенных добавок для модификации полимеров, полимерной продукции, суперконцентратов пигментов
пигменты и красители, не включенные в другие группировки;
вещества неорганические, применяемые в качестве люминофоров
20.12.24
к основным характеристикам цветных супер концентратов можно отнести:
количество/концентрация пигмента в рецептуре (от 20 процентов до 50 процентов), светостойкость (1 - 8 баллов), термостойкость (от 200 до 300 градусов), дополнительные компоненты (антиоксидант, процессинг, улучшающие свойства продукта), показатель текучести суперконцентратов (от 3 до 50 гр/10 мин), наличие наполнителей, стабильность цвета от лота к лоту.
К основным характеристикам добавок для модификации полимеров можно отнести:
количество и качество активных компонентов, которые содержаться в добавке; цена; стабильность качества от лота к лоту. Учитывая, что существует несколько десятков только видов добавок, и в каждом виде порядка 5 - 10 разных рецептур, описывать технические характеристики не представляется возможным
5 июня 2035 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
запускаемая в России технология даст возможность разрабатывать совершенно новые продукты для полимерной индустрии на основе российских сырьевых компонентов. Запуск серийного производства в Российской Федерации даст российскому рынку уникальные знания и специалистов, ранее не представленных в этом сегменте переработки полимеров
2
211.
Технология производства химической продукции с применением кислотного травления серпентинита с последующим дробным (фракционным) осаждением целевых компонентов, на основе кислотно-основных равновесий
элементы химические, не включенные в другие группировки;
неорганические кислоты и соединения
20.13.2
технические характеристики производимых продуктов будут соответствовать следующим ГОСТ по направлениям произведенного продукта:
Дисперсный кремнезем:
ГОСТ 9428-73 "Кремний (IV) оксид"
ГОСТ 18307-78 "Сажа белая"
ГОСТ Р 56178-2014 "Модификаторы органо-минеральные типа мб для бетонов, строительных растворов и сухих смесей" Гидроксид магния:
ГОСТ 34444-2018 "Магний гидроксид наноструктурированный" Оксид магния:
ГОСТ 4526-75 "Магний оксид" Хлорид магния:
ГОСТ 4209-77 "Магний хлористый 6-водный" Железорудный концентрат:
ГОСТ 26475-85 "Продукция железорудная и марганцеворудная" Сульфат магния:
ГОСТ 4523-77 "Магний серно-кислый 7-водный" Требования к технологии:
МЕТОД - кислотное травление серпентинита с последующим дробным (фракционным) осаждением целевых компонентов, на основе кислотно-основных равновесий
1 января 2040 г.
да
обязательно
логичным развитием технологии будет:
дальнейшее повышение чистоты материала, используя физико-химические методы очистки и фильтрации, и разделение его по узким фракциям (размерам частиц), используя акустические методы разделения частиц. Фракция будет влиять на стоимость и более узкую сферу применения материала. Повышение чистоты позволит использовать материал, в частности, в пищевой промышленности, в медицине и микроэлектронике. Термический отжиг в определенных режимах позволит получать кристаллическую форму кремнезема (оксида кремния), которая может найти свое применение в оптоволокне (среде для передачи света и информации). Волокна буду получаться по технологии вытягивания волокна из расплава. Кроме того дисперсный кремнезем может стать сырьем для получения металлического кремния, являющегося основой всей современной электроники (чипов), а также солнечных панелей. Наличие высокочистого сырья в виде кремния позволит наладить производство самих солнечных панелей. Микрочипы и солнечные панели сейчас и в будущем будут очень востребованы на рынке
3
212.
Технология комплексной переработки пластовых вод хлоридно-кальциевого типа с получением продуктов неорганической химии (в том числе соединений брома, лития, кальция)
бром
20.13.21.140
бром: ГОСТ 4109-79 "Бром"
Гидроксид лития: ГОСТ 8595-83
"Лития гидроокись техническая (с Изменением N 1)",
Соляная кислота: ГОСТ 14261-77 "Кислота соляная особой чистоты (с изменением N 1, с поправкой)",
Гипохлорит кальция:
ГОСТ 25263-82 "Кальция гипохлорит нейтральный (с Изменениями N 1, 2, 3)",
Магний-кальциевый концентрат:
содержание магния от 30 процентов до 60 процентов
1 января 2050 г.
да
обязательно
к перспективе дальнейшего развития можно отнести:
извлечение из пластовых вод стронция, магния;
создание собственного производства литий-ионных аккумуляторов;
создание автономных генерирующих электрических систем на базе собственных солнечных панелей из кремния и литий-ионных аккумуляторов из гидроксида лития
3
213.
Технология переработки солевых растворов калийных предприятий с применением метода электродиализа на биполярных мембранах в рамках флотационного метода производства калия
кислота соляная
20.13.24.112
технические характеристики:
концентрированная соляная кислота содержит 37 процентов HCl и имеет плотность 1,19 г/ см3. Она имеет резкий запах и "дымит" на воздухе вследствие выделения газообразного хлороводорода.
Техническая кислота имеет желтый цвет, который обусловливается примесями главным образом солей железа.
Азеотропная смесь содержит 20,2 процентов HCl (t кип. = 109,7 градусов Цельсия при 760 торах).
Требования к технологии:
применением метода электродиализа на биполярных мембранах в рамках флотационного метода производства калия
31 декабря 2040 г.
да
неприменимо, поскольку с учетом отраслевой специфики, разработчиками технологий очистки сточных вод от неорганических солей (общей минерализации) являются сами инициаторы инвестиционных проектов - производители неорганических кислот и (или) щелочей или аффилированные с ними лица. Получение права на создание результатов интеллектуальной деятельности на основе результатов интеллектуальной деятельности, право использования которых в составе заявляемой технологии должно быть получено инвестором, а также права на получение патентов на созданные результаты интеллектуальной деятельности не требуется, т.к. разработчики технологий очистки сточных вод от неорганических солей (общей минерализации) вправе создавать результаты интеллектуальной деятельности и получать на них патенты без дополнительных процедур по приобретению таких полномочий
технология относится к группе мембранных технологий и может иметь дальнейшее развитие в направлении улучшения материалов, конструкций, способов применения биполярных мембран для электродиализа, а также в направлении совокупного применения с другими мембранными процессами, например, баромембранными (для отделения нерастворенных фракций) или другими электромембранными процессами (электродиализ на унополярных мембранах для концентрирования растворов). Технология минимизирует вредное воздействие сбросов калийных предприятий на окружающую среду при выпуске основной продукции - калийных солей и удобрений, что способствует получению улучшенной, экологически чистой, "зеленой" продукции - калийных солей и удобрений. Технология должна обеспечивать утилизацию высокоминерализованных рассолов - хвостов флотации калийного сырья после первичного отстаивания их в шламохранилище. В результате применения технологии рассол должен быть разделен на соляную кислоту и смешанную щелочь калия и натрия с дополнительным выходом воды в зависимости от первичной минерализации рассола
3
214.
Технология производства серной кислоты и олеума
серная кислота, олеум
20.13.24.122
кислота серная марки "К" должна соответствовать по физико-химическим показателям требованиям технических условий ТУ 20.13.24-075-00205311-2019 с массовой долей моногидрата не менее 92,5 процентов.
Олеум должен соответствовать по физико-химическим показателям требованиям ГОСТ 2184-2013 "Кислота серная техническая". Требования к технологии:
Процесс получения серной кислоты методом двойного контактирования с промежуточной абсорбцией
27 мая 2050 г.
да
необязательно. В рамках технологии создается высококонкурентный на мировом рынке продукт
реализация проекта позволит обеспечить сырьевую безопасность, снизить себестоимость производства капролактама и продуктов его переработки. Экономический эффект после ввода в эксплуатацию - до 800 млн. руб. в год
2
215.
Технология производства серной кислоты по технологии "двойное контактирование - двойная абсорбция" с системой утилизации тепла абсорбции
серная кислота
20.13.24.122
технические характеристики:
концентрация моногидрата н/м 92,5 процентов;
массовая доля железа - н/б 0,02 процентов;
массовая доля хлора - н/б 0,0001 процентов. Выход энергетического пара - н/м 0,5 т/т мнг. Удельные расходные нормы потребления сырья, энергоресурсов и количество выбросов должны соответствовать лучшим мировым показателям
31 декабря 2040 г.
да
необязательно. В рамках технологии создается высококонкурентный на мировом рынке продукт
основное применение серной кислоты - использование в производстве минеральных удобрений, с использованием серной кислоты протекает множество процессов, в том числе производство экстракционной фосфорной кислоты. Фосфорная кислота является основным сырьем для производства фосфорсодержащих минеральных удобрений, которые широко используются в сельском хозяйстве.
Также фосфорная кислота и ее производные широко используются в пищевой, автомобильной и деревообрабатывающей промышленностях.
Серная кислота также используется в процессе получения капролактама, в очистке отходящих газов в металлургии, а также множестве других отраслей и производств. Российские производители серной кислоты имеют высокую конкурентоспособность на мировом рынке вследствие наличия доступа к эффективным источникам сырья и энергоресурсов. Технические характеристики (свойства) продукции соответствуют лучшим российским и международным производственным стандартам.
При использовании более эффективного катализатора имеется потенциальная возможность повысить степень конверсии (контактирования) SO2 в SO3, при этом снижается выброс SO2 и повышается выход серной кислоты. К имеющимся штатным системам улавливания SO3 перед выхлопной трубой, возможна установка дополнительной системы очистки, улавливающей кислые газы, что позволит минимизировать их выброс в атмосферу практически до фоновых значений
2
216.
Технология производства экстракционной фосфорной кислоты в дигидратном режиме, полугидратном режиме и смешанном режиме
фосфорная кислота (пентоксид фосфора)
20.13.24.130
технические характеристики:
концентрация H3PO4 - 52 процентов по P2O5 (оксид фосфора);
содержание твердой фазы - 0,5 процентов. Удельные расходные нормы потребления сырья, энергоресурсов и количество выбросов должны соответствовать лучшим мировым показателям
31 декабря 2040 г.
да
необязательно. В рамках технологии создается высококонкурентный на мировом рынке продукт
в технологию изначально закладывается возможность перехода из дигидратного режима в полугидратный режим без дополнительных существенных инвестиций. При этом, производительность установки повышается в 1,5 - 2 раза, концентрация получаемой кислоты из экстрактора повышается с 26 - 28 процентов до 33 - 40 процентов P2O5. Предусматривается возможность расширения узлов экстракции и фильтрации для реализации перехода в дигидрат - полугидратный режим. Такой режим позволяет повысить степень извлечения P2O5 до 99 процентов и получить более чистый фосфогипс, пригодный для его реализации в сельском хозяйстве, строительстве и прочих отраслях
2
217.
Технология производства экстракционной фосфорной кислоты с применением сухого складирования фосфогипса
фосфорная кислота
20.13.24.130
технические характеристики в соответствии с действующими нормативными документами (ГОСТ, ТУ, стандарт предприятия). Требования к технологии:
Сухое складирование фосфогипса с доставкой конвейерным транспортом;
Интенсификация одного комплекса реакторного оборудования производства экстракционной фосфорной кислоты до нагрузки 160 т/ч по апатитовому концентрату, при одновременном сохранении коэффициента извлечения из фосфорсодержащего сырья не меньше 96,4 процентов согласно требованиям наилучших доступных технологий
28 марта 2040 г.
да
неприменимо
потенциал - увеличение выпуска готовой продукции, за счет увеличения фонда рабочего времени существующего фильтровального оборудования. Технология позволяет производить конкурентоспособную на мировом рынке продукцию. Целевой рынок:
продукция используется для внутреннего потребления, как сырье для производства удобрений. Факторы, обеспечивающие ценовую конкурентоспособность продукции:
снижение себестоимости продукции за счет вертикальной интеграции компании и наличие собственного источника высококачественного фосфатного сырья;
наличие собственной сбытовой сети в Латинской Америки, Европе и Азии;
высокое качество готового продукта, достигаемое применением апробированных технологий и высоким качеством исходного сырья
1
218.
Технология регенерации фтора в виде фторида водорода из обедненного гексафторида урана для замыкания ядерного топливного цикла по фтору
фторид водорода (кислота плавиковая)
20.13.24.141
состав фторида водорода должен соответствовать ГОСТ 14022-88 "Водород фтористый безводный";
Плавиковая (фтористоводородная) кислота должна соответствовать ГОСТ 10484-78 "Реактивы. Кислота фтористоводородная", Требования к технологии:
производство фторида водорода (плавиковой кислоты) из обедненного гексафторида урана при его обработке в пламени водородсодержащего топлива и кислорода
30 июня 2040 г.
да
неприменимо
созданная на основе внедрения технологии новая сырьевая база соединений фтора позволит сохранить и укрепить позиции России в производстве таких стратегических материалов, как гексафторид урана, гексафтралюминат натрия, редкоземельные металлы, фторполимеры
1
219.
Технология производства хлора и каустической соды методом мембранного электролиза
гидроксид натрия (сода каустическая)
20.13.25.111
технические характеристики:
гидроксид натрия (каустическая сода):
массовая доля гидроксида натрия - 32 процентов 1 процентов;
массовая доля хлорида натрия не более 30 ppm;
массовая доля хлората натрия не более 20 ppm. Соляная кислота:
массовая доля хлороводорода - 32 процентов;
массовая доля хлора - 2 0,5 ppmw. Хлор:
объемная доля хлора - не менее 98 процентов;
объемная доля кислорода - не более 1,5 процентов;
объемная доля водорода - не более 0,1 процентов Водород:
доля водорода - не менее 99,8 процентов;
объемная доля O2 - не более 0,2 процентов
31 декабря 2050 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
Каустическая сода, полученная методом мембранного электролиза, является чистым и высококачественным продуктом, который является конкурентоспособным продуктом на мировом рынке
3
220.
Технология получения калия путем едкого мембранного электролиза
калий едкий (твердый, жидкий)
20.13.25.112
технические характеристики:
калий едкий (твердый, жидкий) - Продукт не горюч, взрывобезопасен, обладает ярко выраженными свойствами щелочи, сильный электролит, при растворении выделяется тепло. Кислота соляная синтетическая техническая - бесцветная прозрачная жидкость или с желтоватым оттенком. Гипохлориты (натрия, калия) - жидкость от зеленовато-желтого до красно-коричневого цвета. кальций хлористый технический (жидкий, гранулированный) - раствор желтовато-серого или зеленоватого цвета прозрачный или с легкой мутью. Чешуйки белого или серого цвета. Калия карбонат гранулированный (поташ) - гранулы белого цвета. Калия карбонат гранулированный - гранулы белого цвета.
Действующее вещество:
углекислый калий - 98 процентов - 99,5 процентов.
Гранулометрический состав продукта:
остаток на сите 0 процентов - 20 процентов;
прохождение через сито с сеткой - 0 процентов - 10 процентов.
Требования к технологии:
Технология мембранного электролиза
1 января 2050 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
исходя из мирового опыта апробирования метода мембранного электролиза, потенциал развития современной технологии заключается в использовании более совершенных ионообменных мембран, характеризующихся большим ресурсом эксплуатации и меньшей стоимостью по сравнению с существующими типами мембран, а также в создании и внедрении более эффективных и экономичных систем (установок) химической и ионообменной очистки раствора хлорида калия от нежелательных примесей. Продукт является конкурентоспособным так как содержание хлористого калия в растворе едкого кали меньше чем обычно в два раза (в пределах 9 ppm), высокая устойчивость к примесям в рассоле
3
221.
Технология (баромембранная) получения биологически активных субстратов, включающая концентрирование, деменерализацию, диафильтрацию, лиофилизацию и жидкостную хромотографию на ионообменных смолах
оксиды, гидроксиды и пероксиды прочие
20.13.25.119
технические характеристики продукта:
биологическая активность против широкого спектра патогенных микроорганизмов, в том числе антибиотикоустойчивых форм;
выход белка не менее 90 процентов от содержания его в сырье;
чистота продукта не менее 95 процентов (по белку);
насыщенность железом, соотвествующая природному белку - 10 процентов - 14 процентов
1 января 2030 г.
да
неприменимо
лактоферрин человека отсутствует на мировом рынке. Ежегодный рынок инновационной продукции оценивается в 6 млрд долл. Проект предусматривает создание промышленного наукоемкого инновационного производства субстратов для фармацевтической промышленности. Планируется модификация, совершенствование технологии производства промышленной продукции, которые приведут к появлению новых уникальных свойств промышленной продукции, способа производства промышленной продукции и расширению спектра областей применения промышленной продукции. Многочисленными исследованиями с привлечением аккредитованных государственных биологических и медицинских организаций, была показана идентичность биоаналога лактоферрина природному белку и его полная биобезопасность. В клинических условиях (дерматология, гинекология, стоматология и др.) показан выраженный бактерицидный эффект биоаналога лактоферрина человека,
1
обнаружена его активность против антибиотикустойчивой микрофлоры (бактерии, грибки). Еще одним важным свойством лактоферрина человека является его участие в процессах костеобразования. Кроме того, проведенные нашими научными партнерами разработки позволяют рассматривать лактоферрин как важнейший фактор барьерного иммунитета, препятствующий проникновению вирусов, в том числе и коронавируса, в клетку и его межклеточной передачи. Потенциальными потребителями готовой продукции на основе лактоферрина будут компании, производящие лекарственные средства и средства медицинского назначения, в том числе, и в рамках госзаказа, производители компонентов лечебного и функционального питания
222.
Технология производства фтористого алюминия из кремнефтористоводородной кислоты
фтористый алюминий технический
20.13.31
технические характеристики:
алюминий фтористый технический:
фторид алюминия - не менее 93 процентов массы;
свободный оксид алюминия - не более 2 процентов массы;
потери при прокаливании - не более 1,5 процентов масс.;
свободная влага - не более 1 процентов массы;
угол естественного откоса - не более 35°, соответствует ГОСТ 19181-78 "Алюминий фтористый технический"
31 декабря 2040 г.
да
обязательно
технология позволяет иметь сниженные удельные энергозатраты и производить конкурентоспособную на мировом рынке продукцию. Технические характеристики продукции соответствуют российским и мировым аналогам
2
223.
Технология получения тетрахлорида германия с повышенными требованиями к водородным донорам для волоконно-оптических линий связи
тетрахлорид германия с повышенными требованиями к водородным донорам
20.13.31.000
тетрахлорид германия с повышенными требованиями к водородным донорам получается способами глубокой очистки (дистилляция, ректификация и) имеет должен иметь следующие характеристики:
содержание водородных доноров:
O-H менее или равно 0,12 ppm;
C-H менее или равно 0,05 ppm;
H-Cl менее или равно 0,1 ppm. Общее содержание металлических примесей:
алюминий (Al), хром (Cr), медь (Cu), железо (Fe), молибден (Mo), никель (Ni), ванадий (V) - менее или равно 1,0 ppb;
кобальт (Co), марганец (Mn) - менее или равно 0,5 ppb;
общее содержание металлических примесей - менее или равно 10,0 ppb. Металлические примеси определяются методом масс-спектрометрии с индуктивно связанной плазмой
1 января 2030 г.
да
неприменимо
высокочистый тетрахлорид германия используется в оптических волокнах различных систем связи. Постоянно растущий объем данных требует непрерывного увеличения пропускной способности и широты охвата паутины коммуникационной линии. По прогнозам специалистов, ожидается активный рост рынка волоконно-оптических линий связи за счет применения волокна в новых отраслях мировой промышленности и развития сетей 5G (следующего поколения стандартов подвижной связи, способное повысить ее эффективность и надежность). По оценке авторов независимых экономических исследований, сети и услуги 5G принесут существенные экономические выгоды. Стимулировать увеличение потребления оптического волокна может программа развития цифровой экономики.
Для использования в современных условиях, тетрахлорид германия должен иметь повышенную чистоту.
Особое внимание уделяется содержанию водородных доноров в тетрахлориде германия. В настоящее время в мире только одна компания (Umicore, Бельгия) производит тетрахлорид германия, удовлетворяющий современным требованиям. Достижение таких показателей сделает российский продукт конкурентоспособным по сравнению с зарубежным производителем аналогичного продукта
1
224.
Технология получения гипохлорита кальция с высоким содержанием активного хлора натриевым способом
гипохлорит кальция (кальций хлорноватистый)
20.13.32.110
технические характеристики:
массовая доля активного хлора - не менее 70 процентов;
массовая доля воды - 6 2 процентов;
массовая доля нерастворимого осадка:
не более 10 процентов;
коэффициент термостабильности:
не менее 0,9. ТУ 20.13.32-557-05763441-2017
31 декабря 2035 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
возможность строительства второй очереди производства гипохлорита кальция;
возможность выпуска дополнительной продукции - таблетированного глюкозаминного-хондроитинового комплекса для продажи на рынках подготовки питьевой воды и дезинфекции воды в бассейнах.
Использование гипохлорита кальция возросло во всем мире благодаря присутствию производителей продуктов гипохлорита кальция и высокой эффективности этих продуктов
3
225.
Технология производства нейтрального гипохлорита кальция
гипохлориты
20.13.32.110
произведенный в результате освоения технологии нейтральный гипохлорит кальция должен обладать высокой активностью (содержание активного хлора до 70 процентов) и длительным сроком и компактностью хранения по сравнению с аналогами.
Внешний вид - порошкообразный продукт белого цвета или слабоокрашенный.
Массовая доля активного хлора - до 70 процентов.
Массовая доля воды - не более 2 процентов.
Массовая доля нерастворимого остатка - не более 12 процентов.
Коэффициент термостабильности - не менее 0,90 Требования к технологии:
В основе технологии лежит периодический процесс, в ходе которого известь, каустик и хлор реагируют друг с другом в контролируемых условиях с образованием суспензии кристаллов гипохлорита кальция.
В ходе последующих операций осуществляются непрерывные процессы сепарации, сушки и доводки до образования сухих кристаллов. В технологическом процессе осуществляется вторичная переработка первичного маточного раствора, что позволяет извлекать и возвращать в повторную переработку сырье и продукт с целью оптимизации работы установки
31 декабря 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
рассматривается вариант потенциального развития после освоения производства в промышленных масштабах в направлении снижения расходных норм сырья и энергетики путем подбора оптимальных условий эксплуатации
2
226. <*>
Технология получения фосфорнокислой соли метионина сульфоксимина для кормовых премиксов
фосфат метионина сульфоксимина
20.13.42.130
требования к продукции - фосфат метионина сульфоксимина:
содержание основного вещества, не менее 85 процентов;
содержание фосфорной кислоты, не более 15 процентов. требования к технологии:
выход продукта не менее 65 процентов;
отечественная сырьевая база исходных компонентов;
автоматизированный процесс производства;
минимизация отходов производства
28 мая 2050 г.
да
неприменимо
расширение ассортимента производных сульфоксиминов для фармацевтической отрасли;
использование искусственного интеллекта для управления процессом производства;
увеличение объема производства продукта;
модернизация оборудования с целью снижения расходных коэффициентов по сырью
1
227.
Технология приготовления раствора нитрата магния
раствор нитрата магния
20.13.42.150
технические характеристики:
массовая доля оксида магния не менее 100 г/дм3, pH 6,5 - 7,5 Требования к технологии:
Получение водного раствора нитрата магния путем нейтрализации магнезита или брусита неконцентрированной азотной кислотой с последующим отделением неразложившегося остатка и получением в качестве целевого продукта 35 процентного раствора нитрата магния. Осветление полученной суспензии происходит в пресс-фильтре с последующей подачей светлого, отфильтрованного раствора на стадию выпаривания
27 мая 2040 г.
да
необязательно. В рамках технологии создается высококонкурентный на мировом рынке продукт
перспектива использования доступного российского сырья (доломит, брусит);
высокий выход целевого продукта. Технология производства раствора нитрата магния учитывает потребности в увеличении производственных мощностей и позволит обеспечить:
производство сульфат-нитрата аммония;
существующее и новое производство аммиачной селитры. Раствор нитрата магния применяется в качестве добавки для уменьшения слеживаемости и повышения прочности гранул аммиачной селитры.
Аммиачная селитра остается широко применяемым удобрением среди отечественных сельхозпроизводителей. Потребление на внутреннем рынке в 2019 г. выросло на 10,2 процентов и составило порядка 6,2 млн. тонн. По прогнозу Минсельхоза России, в 2020 г. ожидается рост посевной площади в России до 80,3 млн. га. Сохранение положительной динамики в растениеводстве планируется обеспечить в том числе за счет повышения почвенного плодородия путем увеличения объемов внесения удобрений до 8 млн. тонн к 2024 году
2
228.
Технология производства продукции на основе нитрата кальция, образующегося в производстве сложных удобрений, содержащих азот, фосфор, калий, и используемого для выпуска продукции различных марок для агрохимических и технических целей
аммоний кальций нитрат (для технических целей)
20.13.42.150
массовая доля:
азота общего не менее 15.5 процентов;
кальция не менее 18,8 процентов;
нитрата кальция не менее 77 процентов;
нитрата аммония не более 7,5 процентов;
Статистическая прочность гранул не менее 4,2 кгс/гранулу.
Требования к технологии:
применение барабана-гранулятора с кипящим слоем за счет применения внутренних устройств:
стола кипящего слоя и системы распыления
31 декабря 2040 г.
да
необязательно. В рамках технологии создается высококонкурентный на мировом рынке продукт.
на внедряемой технологической линии возможно расширение ассортимента выпускаемой продукции. Возможно увеличение производительности агрегата на 10 - 15 процентов без существенных инвестиций
2
229.
Технология производства продукции на основе нитрата кальция, образующегося в производстве сложных удобрений, содержащих азот, фосфор, калий, и используемого для выпуска продукции различных марок для агрохимических и технических целей
кальциевая селитра (для технических целей)
20.13.42.150
Массовая доля:
нитрата кальция не менее 96 процентов;
кальция не менее 33 процентов;
азота общего не менее 17 процентов;
нитратного азота не менее 16,9 процентов;
воды, не более 3.0 процентов. Статическая прочность гранул, не менее 2 кгс/гранулу.
Требования к технологии:
применение барабана-гранулятора с кипящим слоем за счет применения внутренних устройств:
стола кипящего слоя и системы распыления
31 декабря 2040 г.
да
необязательно. Обязательных намерений по усовершенствованию технологии не предполагается, права на интеллектуальную собственность, которой принадлежат иностранной компании. В результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
на внедряемой технологической линии возможно расширение ассортимента выпускаемой продукции. Возможно увеличение производительности агрегата на 10 - 15 процентов без существенных
2
230.
Технология производства содосульфатной смеси методом карбонизации сырья природного происхождения
содосульфатная смесь для производства стекла (сода кальцинированная прочая)
20.13.43.119
технические характеристики:
внешний вид - гранулы белого цвета;
массовая доля углекислого натрия 95,5 процентов;
массовая доля углекислого натрия в пересчете на непрокаленный продукт не менее - 94,7 процентов;
массовая доля потери при прокаливании (при 270 - 300 °C), не более - 0,8 процентов;
массовая доля хлоридов в пересчете не более - 0,8 процентов;
массовая доля железа в пересчете не более - 0,008 процентов;
массовая доля веществ, нерастворимых в воде не более - 0,08 процентов;
массовая доля сульфатов в пересчете на Na2SO4 не более - 3,0 процентов 0,1 процентов;
насыпная плотность - 0,9 г/см3;
магнитные включения размером более 0,25 мм
1 июня 2030 г.
да
неприменимо
потенциал развития технологии заключается в снижении себестоимости целевого продукта. В глобальном смысле, технология позволит развить и повысить эффективность газ-жидкостных процессов за счет использования эффективных реакторных решений. Перспектива роста возможна как в области неорганической химии (извлечение ценных компонентов из природного сырья), так и в области органических процессов - окисление углеводородов кислородом воздуха и проведение процессов формилирования
1
231.
Технология производства хлористого калия (марки А и Б) галургическим методом
калий хлористый (технический марки А и Б)
20.13.62.190
технические характеристики:
массовая доля хлорида калия - н/м 98,2 процентов (в пересчете на оксида калия - н/м 62,0 процентов);
массовая доля воды - н/б 0,5 процентов;
массовая доля хлорида натрия - н/б: - 1,3 процентов для марки "А" и 1,6 процентов для марки "Б"
31 декабря 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
особенностью месторождений хлористого калия является их высокая доля локализации, а крупнейшие регионы потребители данного продукта не имеют собственного источника этого продукта и изменения данной ситуации в будущем не предвидится. Как следствие, по данным международной ассоциации производителей удобрений в 2018 году доля экспорта в поставках хлористого калия превысила 75 процентов. В условиях роста численности населения планеты и ограниченности площади пахотных земель человечество испытывает потребность в высоких урожаях для обеспечения продовольственной безопасности. Исследования показывают, что достигнуть максимальной урожайности и получить продукцию высокого качества можно только путем обеспечения растений всеми необходимыми элементами в требуемых количествах, в том числе и калием. Это значит, что в будущем спрос на хлористый калий будет продолжать расти. За период с 2000 по 2019 год рост спроса на хлористый калий составлял 2,1 процентов в год. Все это говорит в пользу высокой перспективности производства хлористого калия как экспортно-ориентированного продукта
2
232.
Технология производства перекиси водорода антрахиноновым методом
Перекись водорода (пероксид водорода)
20.13.63.000
технические характеристики:
концентрация перекиси водорода:
30 процентов - 35 процентов;
содержание активного кислорода - 16,5 масс. процентов;
остаток при выпаривании, макс. - 0,05 г/100 мл;
остаток при прокаливании, макс. - 0,001 г/100 мл;
стабильность - 25 мл. образец при 100 градусах, содержание органического углерода, макс. - 300 ppm;
кислотность, макс. - 0,03 г/100 мл;
железа, как Fe 2+, макс. - 100 ppb;
медь, как Cu 2+, макс. - 10 ppb;
свинец, как Pb 2+, макс. - 10 ppm;
мышьяк макс. - 2 ppm;
фосфат - 200 ppm. Антрахиноновый метод получения перекиси водорода отличается от общепринятых. Предусматривается получение перекиси вородода с концентрацией 35 процентов и 60 процентов. Таким образом, антрахиноновая перекись изначально не соответствует требованиям ГОСТ и будет производиться по отдельно разработанным ТУ, регламентирующим гораздо более высокие показатели качества, нежели действующие
31 декабря 2035 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
в перспективе на основе 60 процентов антрахиноновой перекиси водорода планируется освоить выпуск высококонцентированной перекиси водорода для нужд Роскосмоса. Увеличение выпуска отечественной перекиси водорода позволит создать базу для развития продуктов ее переработки:
органические перекиси (перекись бензоила и другие термические инициаторы радикальной полимеризации), винная кислота (модифицирующая добавка для гипсовых смесей)
3
233.
Технология получения паратолуолсульфокислоты
паратолуолсульфокислота
20.14.14
технические характеристики должны соответствовать ТУ 6-09-3668-77 "Пара-толуолсульфокислота одноводная". По заявленной технологии будет производиться два типа продукции:
квалификации "ч":
содержание основного вещества не менее 99 процентов;
сульфаты не более 0,8 процентов;
содержание железа не более 0,05 процентов;
тяжелые металлы не более 0,007 процентов;
квалификация "тех":
содержание основного вещества не менее 95 процентов;
сульфаты не более 2,0 процентов;
содержание железа не более 0,1 процентов. Производство п-толуолсульфокислоты основано на реакции сульфирования толуола в условиях отведения образующейся воды с последующим выделением и очисткой образующегося продукта
31 декабря 2040 г.
да
неприменимо
в настоящее время в Российской Федерации данный продукт не производится и поставляется из Китайской Народной Республики. Паратолуолсульфокислота - промежуточный продукт в производстве n-крезола, азокрасителей, лаков и стойких к кислотам и щелочам замазок, эффективный кислотный катализатор в органическом синтезе. Наличие собственных мощностей по переработке отработанной серной кислоты позволяют получить высокую экономическую эффективность проекта. Гибкое производство широкого спектра родственных соединений для использования в качестве фармацевтических субстанций. По содержанию основного вещества в продукте квалификации "ч" п-толуолсульфокислота превосходит показатели российских и импортных производителей. продукт предназначен для использования в качестве фармацевтической субстанции
1
234.
Технология получения пара-толуолсульфокислоты
паратолуолсульфокислота
20.14.14.
массовая доля основного вещества не менее 95 процентов.
Продукт белого цвета, сыпуч, с температурой плавления 106 градусов (допускаемая температуру плавления не ниже 97 градусов). Содержание свободной серной кислоты не более 1 процентов;
массовая доля влаги не более 1 процентов;
массовая доля основного вещества составит не менее 97 процентов. Технологический процесс:
использование в процессе синтеза отработанной серной кислоты
31 декабря 2035 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
потенциал присутствует:
повышение качества продукции - получение продукта особой степени чистоты с массовой долей основного вещества не менее 99,9 процентов (требует дополнительной очистки) - для медицинского применения. в настоящее время в Российской Федерации данный продукт не производится и поставляется из Китайской Народной Республики. Паратолуолсульфокислота - промежуточный продукт в производстве n-крезола, азокрасителей, лаков и стойких к кислотам и щелочам замазок, эффективный кислотный катализатор в органическом синтезе
3
235.
Технология получения циннамил хлорида
производные углеводородов прочие, не включенные в другие группировки
20.14.19.190
продукт высокой степени чистоты для фармацевтической промышленности (содержание основного вещества >99 процентов). Технология получения циннамил хлорида основана на реакции коричного спирта с хлорирующим агентом в слабощелочной сред
31 декабря 2040 г.
да
неприменимо
продукт такого качества (содержание основного вещества > 99 процентов) в России не производится, для синтеза лекарственного препарата нафтифина импортируется. Кроме того, данная технологическая линия позволяет получать вторую фармацевтическую субстанцию - коричный спирт. В ходе эксплуатации промышленной линии будут продолжены работы по совершенствованию технологии, найдены решения по ее модернизации, в частности, обеспечению замкнутого цикла производства
1
236.
Технология получения коричного спирта в качестве продукта малотоннажной химии
спирты, фенолы, фенолоспирты и их галогенированные, сульфированные, нитрованные или нитрозированные производные;
спирты жирные промышленные
20.14.2
продукт высокой степени чистоты для фармацевтической промышленности (содержание основного вещества >99 процентов). Технология основывается на кротоновой конденсации бензальдегида с ацетальдегидом с последующим восстановлении коричного альдегида изопропиловым спиртом в присутствии окиси алюминия
31 декабря 2040 г.
да
неприменимо
в перспективе в зависимости от рыночной конъюнктуры мощность производственной линии может быть увеличена в два раза за счет замены одного из реакторов синтеза. На данной технологической линии планируется производство двух фармацевтических субстанций - заявленного коричного спирта и на его основе в одну стадию циннамилхлорида
1
237.
Технология получения о-крезола
спирты, фенолы, фенолоспирты и их галогенированные, сульфированные, нитрованные или нитрозированные производные;
спирты жирные промышленные
20.14.2
о-Крезол высокой степени чистоты для фармацевтической промышленности должен соответствовать ГОСТ 11312-74 "Ортокрезол каменноугольный технический". Требования к технологии:
использование в качестве сырья о-толуолсульфокислоты, являющейся побочным продуктом сульфирования толуола в пара-положение. Щелочной плав о-толуолсульфокислоты с последующим подкислением приводит к получению о-крезола
31 декабря 2028 г.
да
неприменимо
планируемая мощность производства о-крезола лимитируется объемами производства пара-толуолсульфокислоты, побочным продуктом синтеза которой является орто-ТСК, сырье для получения заявленного продукта. По предварительной оценке, мощность по о-крезолу составляет 50 т. в год. Данная производительность может быть в разы увеличена за счет использования импортного сырья. В перспективе, при применении технологии возможно создание гибкого производства широкого спектра родственных соединений для использования в качестве фармацевтических субстанций
1
238.
Технология получения резорцина
резорцин (спирты, фенолы, фенолоспирты и их галогенированные, сульфированные, нитрованные или нитрозированные производные;
спирты жирные промышленные)
20.14.2
технические характеристики:
массовая доля основного вещества не менее 99,6 процентов, для фармацевтической и химической промышленности и должна соответствовать ГОСТ 9970-74 "Резорцин технический". В конечном продукте (резорцин технический) массовая доля фенола не более 0,09 процентов;
массовая доля железа - не более 0,006 процентов;
массовая доля пирокатехина - не более 0,1 процентов.
Требования к технологии:
получение резорцина путем использования мета-диизопропилбензола, образующегося в качестве побочного компонента в производстве фенола кумольным методом
31 декабря 2040 г.
да
неприменимо
В перспективе на основе разработанной технологии будет создано производство родственного продукта - гидрохинона (изомера резорцина). В качестве основного сырьевого компонента используется пара-диизопропилбензол (в производстве резорцина - мета-диизопропилбензол), что позволит адаптировать технологический процесс к производству нового продукта без кардинальных изменений за счет корректировки технологических параметров. Кроме того, в случае благоприятной рыночной конъюнктуры возможно увеличение мощности производственной линии за счет замены реактора окисления на реактор большего объема. Именно стадия окисления лимитирует выход готовой продукции
1
239.
Технология получения бисфенола А из фенола и ацетона с использованием ионообменных смол в качестве катализатора
бисфенол А (спирты, фенолы, фенолоспирты и их галогенированные, сульфированные, нитрованные или нитрозированные производные;
спирты жирные промышленные)
20.14.2
бисфенол А представляет собой гранулы белого цвета со слабовыраженным фенольным запахом. Содержание основного вещества (в виде п,п-изомера) не менее 99,9 процентов. Способ производства:
синтез из ацетона и фенола с применением в качестве катализатора ионообменных смол с последующей очисткой перекристаллизацией
1 января 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
в настоящее время предложенная технология является наиболее совершенной технологией получения бисфенола А. После строительства и запуска установки возможно привлечение научно-исследовательских организаций для проработки вопроса поиска катализаторов-аналогов российского производства
2
240.
Технология производства фенола кумольным методом с улучшенными качественными показателями
фенол синтетический технический (спирты, фенолы, фенолоспирты и их галогенированные, сульфированные, нитрованные или нитрозированные производные;
спирты жирные промышленные)
20.14.2
фенол синтетический технический с содержанием фенола не менее 99,9 процентов, масс. Метод производства:
производство фенола кумольным методом с улучшенными качественными показателями
31 декабря 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
по данной технологии производится конкурентоспособная на мировом рынке промышленная продукция. Ацетон, получаемый по технологии как сопутствующий продукт, будет использоваться в качестве сырья для гидрирования его водородом в процессе получения изопропилового спирта
2
241.
Технология получения метанола методом парового риформинга с применением высокоактивных катализаторов и каталитической очистки дымовых газов от окислов азота
спирт метиловый (метанол)
20.14.22.111
метанол технический соответствующий требованиям для Марки "А" по ГОСТ 2222-95 "Метанол технический. Технические условия"
3 июня 2050 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
некоторые процессы в технологии производства метанола фирмы "Haldor Topsoe AS" успешно модернизируются. Есть наработки по улучшению катализаторов риформинга и синтеза метанола, что сказывается на улучшении селективности и увеличению производительности. Разработана технология выделения и получения водородного газа высокой чистоты (вплоть до 99,9 процентов), необходимого для нужд предприятия. Обеспечена переработка метанола в диметиловый эфир и смолы на территории предприятия (в т.ч и на мощностях СП с Hexion), разрабатываются проекты по расширению мощностей переработки в карбамид-формальдегидный концентрат, формалин для фенол-формальдегидных и карбамид-формальдегидных смол
2
242.
Технология производства метанола
спирт метиловый (метанол)
20.14.22.111
метанол товарный, соответствует требованиям ГОСТ 2222-95 "Метанол технический" и требованиям Международной ассоциации производителей и потребителей метанола
31 декабря 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
рост мирового спроса на метанол определяется новыми применениями - в качестве топлива и топливных присадок. Технология совершенствуется компанией разработчиком, в целях оптимизации затрат на производство, энергосбережения и улучшения качества производимого метанола
2
243.
Технология производства метанола из природного газа методом автотермического или комбинированного риформинга
спирт метиловый (метанол)
20.14.22.111
продукт должен соответствовать как российскому ГОСТ 2222-95 "Метанол технический", так и международным стандартам с соблюдением более жестких нормативных показателей при расхождении между нормативными документами. Метод производства:
технология основана на получении метанола из природного газа на агрегатах высокой мощности методом автотермического или комбинированного риформинга. Производительность не менее 4500 тонн метанола/сутки. Расход природного газа не более 900 см3/т. метанола. Расход электроэнергии не более 50 кВт*ч/т. метанола
31 декабря 2040 г.
да
необязательно, поскольку с учетом отраслевой специфики, разработчиками и владельцами результатов интеллектуальной деятельности, право использования, которых в составе технологии предполагается к получению в соответствии со специальным инвестиционным контрактом, являются международные лицензиары. Данные компании вместе с результатами интеллектуальной деятельности для внедрения технологии также предоставляют инициатору инвестиционного проекта гарантии на достижение целевых показателей при отсутствии несогласованных изменений технологии
развитие возможно, как по направлению увеличения производительности, что возможно за счет применения новых катализаторов и изменения параметров процесса, так и путем дальнейшей глубокой переработки метанола в химическую и энергетическую продукцию (пластики, топливо, топливные элементы и т.д.). Потенциал развития технологии после запуска производства связан с возможностью интенсификации использования введенного в строй оборудования. Для каталитических процессов, к которым относится технология метанола на агрегатах повышенной мощности, наиболее актуальным способом интенсификации является изменение типа катализаторов для ускорения целевой химической реакции, замедления побочных реакций и тем самым повышения селективности процесса и увеличения удельной производительности существующего реакционного объема. Это может также потребовать изменения температуры и давления процесса в диапазоне, доступном для эксплуатируемого оборудования. Практическим результатом этого может стать увеличение производительности действующей установки на десятки процентов и соответствующее снижение удельных показателей потребления и образования загрязняющих веществ
2
244.
Технология совмещенного производства аммиака и метанола
спирт метиловый (метанол)
20.14.22.111
Технические требования к качеству продукции определяются по ГОСТ 2222-95 "Метанол-яд технический". Основные технические требования к качеству продукции:
массовая доля воды н/б 0,05 процентов;
массовая доля этанола н/б 0,01 процентов
4 июня 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
имеется потенциальная возможность увеличения выработки пара. Имеется потенциальная возможность снижения затрат на очистку конвертированного газа от диоксида углерода. Имеется потенциальная возможность увеличения производительности отделения ректификации вакуумированием и предректификацией
2
245.
Технология энергоэеффективного производства изопропанола методом гидрогенизации ацетона
спирт изопропиловый
20.14.22.113
содержание основного вещества более 99,94 процентов. Планируется разработка технических условий. Требования к технологии:
синтез гидрированием ацетона водородом
31 декабря 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
данная технология производства изопропилового спирта является одной из лучших в мире по показателям ресурсо-, энергоэффективности, а также качеству готовой продукции. Дальнейшее развитие технологии может быть связано с созданием производств продукции последующих переделов, в том числе стеклоомывающей жидкости для автомобилей, дезинфицирующих средств (антисептики/санитайзер), перекиси водорода
2
246.
Технология производства нормального бутилового и изобутилового спиртов, 2-этилгексанола, 2-этилгексановой кислоты (через 2-этилгексеналь) по технологии оксосинтеза с применением родиевой каталитической системы
спирты одноатомные
20.14.22
продукция должна соответствовать ГОСТ 9536-2013 "Спирт изобутиловый технический", ГОСТ 5208-2013 "Спирт бутиловый нормальный технический". Технология производства:
нормального бутилового и изобутилового спиртов, 2-этилгексанола, 2-этилгексановой кислоты (через 2-этилгексеналь) по технологии оксосинтеза из пропилена и синтез газа с применением родиевой каталитической системы
31 декабря 2034 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
технология производства обеспечивает возможность модификации и оптимизации процесса производства продукции под потребности рынка с возможностью адаптации марочного ассортимента и сокращения стадий технологических переделов
3
247.
Технология получения высокочистых стеролов из ситостерина-сырца
спирты одноатомные ненасыщенные прочие
20.14.22.139
ситостерин высокой степени чистоты (качественные характеристики):
содержание суммы шести основных трансформируемых стеринов не менее 96 процентов;
общее содержание всех стеринов не ниже 99 процентов;
не стериновые примеси не более 1 процентов.
Характеристики технологии получения:
степень извлечения стеринов из сырья не менее 80 процентов;
массовый выход от сырья не менее 40 процентов;
Энергозатраты не более 4,5 ГДж/т готовой продукции
31 декабря 2040 г.
да
обязательно
в перспективе возможно увеличение выхода и степени извлечения ценных компонентов (стеринов) из сырья на 10 - 15 процентов за счет применения более эффективного технологического оборудования, рециклизации побочных продуктов
2
248.
Технология получения ситостерина-сырца и сопутствующих продуктов из таллового пека
спирты одноатомные ненасыщенные прочие
20.14.22.139
ситостерин-сырец (качественные характеристики):
содержание суммы основных стеролов (кампестерин, кампестанол, стигмастанол, -ситостерин, ситастанол) - от 59,0 процентов до 75,0 процентов;
температура каплепадения - от 115,0 °C до 125,0 градусов Цельсия;
температура размягчения - от 120,0 °C до 130,0 градусов Цельсия;
кислотное число - не более 2 мг;
содержание летучих компонентов - не более 0,5 процентов;
Характеристики технологии получения:
степень извлечения стеринов из сырья (таллового пека) - не менее 85 процентов;
энергозатраты - не более 54 ГДж/т готовой продукции
31 декабря 2040 г.
да
обязательно
возможно снижение норм расхода сырья, материалов, вспомогательных веществ и энергопотребления, как минимум, на 10 процентов за счет оптимизации процессов производства
2
249.
Технология производства неопентилгликоля
диолы
20.14.23.110
технические характеристики:
высокое качество товарного продукта (> 99,4 процентов), отсутствие побочной продукции и щелочных стоков, присущей "формиатным" технологиям. Длительный межремонтный пробег (до 4 лет), гибкость по форме выпуска, малое количество вредных выбросов в атмосферу
31 декабря 2035 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
наличие производства неопентилгликоля откроет возможности для дальнейшего развития в Российской Федерации производств полиэфирных смол
2
250.
Технология производства бутандиола-1,4
Бутандиол-1,4.
20.14.23.119
технические характеристики:
бутандиол-1,4 соответствует требованиям ТУ 64-5-120-75 (марка А - с содержанием основного вещества не менее 99 процентов;
марка Б - с содержанием основного вещества не менее 98,2 процентов), а также ГОСТ 242250 "Спирты многоатомные прочие", подраздел Бутандиол-1,4
31 декабря 2035 г.
да
неприменимо
в перспективе после выхода производства бутандиола - 1,4 на промышленную мощность планируется диверсификация производства:
получение на основе бутандиола-1,4-бутиролактона и тетрагидрофурана
1
251.
Технология производства бутиндиола-1,4
Бутин-2-диол-1,4
20.14.23.119
бутиндиол-1,4 в двух товарных формах:
кристаллический и 50 процентов водный раствор. 1,4-Бутиндиол представляет собой водорастворимые бесцветные или светло-коричневые кристаллы. Первая - в виде водного раствора с содержанием основного вещества - не менее 50 процентов. В качестве примесей декларируются:
формальдегид не более 0,25 процентов;
пропаргиловый спирт не более 0,25 процентов. Вторая форма выпуска - в кристаллическом состоянии, что представляет собой преимущество заявляемой технологии по сравнению с импортными аналогами, реализующими продукт исключительно в виде водного раствора. Требования к технологии:
получение бутандиола-1,4 гидрированием ацетиленового аналога - двухатомного спирта бутиндиола-1,4, синтезируемого по методу Реппе из ацетилена и формальдегида. Технология основана на синтезе Реппе
31 декабря 2035 г.
да
неприменимо
в перспективе после выхода производства бутиндиола-1,4 на промышленную мощность планируется диверсификация производства:
получение на его основе бутандиола-1,4-бутиролактона и тетрагидрофурана
1
252.
Технология производства гидрохинона
1,4-дигидрокси-бензол
20.14.23.119
продукт соответствует требованиям и нормам ГОСТ 19627-74 "Гидрохинон (парадиоксибензол)" высшего сорта". Массовая доля гидрохинона не ниже 99,10 процентов;
цветность по бихроматной шкале не более 12;
температура плавления 171 - 175 градусов Цельсия;
массовая доля потерь при высушивании не более 0,03 процентов;
массовая доля железа не более 0,002 процентов;
массовая доля тяжелых металлов (Pb) не более 0,0005 процентов. Требования к технологии:
получение гидрохинона жидкофазным окислением пара-диизопропилбензола с последующим разложением гидроперекиси в кислой среде
31 декабря 2040 г.
да
неприменимо
в перспективе в ходе эксплуатации промышленной линии будут продолжены работы по совершенствованию технологии, найдены решения по модернизации, в частности, обеспечению замкнутого цикла производства, на базе заявленной технологии будет создана технологическая линия нового поколения
1
253.
Технология получения бутандиола, N-метилпирролидона и тетрагидрофурана
спирты многоатомные
20.14.23.120
качество продукции должно соответствовать образцам лучших мировых аналогов компаний BASF, Ashland (ранее ISP) и DuPont.
31 декабря 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
сырье для биополимеров и высокотехнологичных пластиков
3
254.
Технология получения адипиновой кислоты
кислота адипиновая
20.14.3
кислота адипиновая высокой степени чистоты (99,7 процентов) для химической и пищевой промышленности. Технические характеристики должны соответствовать ГОСТ 10558-80 "Кислота адипиновая". Требования к технологии:
использование в качестве сырьевой базы фенола вместо циклогексанона
31 декабря 2040 г.
да
неприменимо
в перспективе, после выхода промышленной линии на максимальную мощность планируется создание сопутствующего производства солей адипиновой кислоты:
адипинатов натрия, калия, кальция и аммония, предназначенных для применения в фармацевтической и пищевой промышленности
1
255.
Технология получения муравьиной кислоты
кислота муравьиная, ее соли и сложные эфиры
20.14.32.110
технолоогически характеристики должны соответствовать качеству соответствующим лучшим зарубежным образцам:
HCOOK 96 процентов, продукция высшего класса - для метилформиата, продукция высшего класса, HCOOH 85 процентов для метановой кислоты
31 декабря 2035 г.
да
обязательно
потенциал присутствует - расширение ассортимента (выпуск формиатов калия и натрия на основе муравьиной кислоты). Предполагается одновременное производство метанола, формиата калия, метилформиата и муравьиной кислоты
2
256. <*>
Технология получения триацетина с использованием гетерогенных катализаторов
триацетин
20.14.32.120
триацетин технический должен соответствовать высокому качеству и может использоваться в пищевом производстве
31 декабря 2035 г.
да
неприменимо
потенциал присутствует - снижение себестоимости производства за счет модернизации каталитической системы
1
257.
Технология производства стеарата магния
соли стеариновой кислоты
20.14.32.182
стеарат магния марки (ч), соответствующий ТУ 6-09-16-1533-90 "Магний стеарат для фармацевтической промышленности". Основные технические характеристики стеарата магния:
содержание основного вещества 98 процентов - 100 процентов;
массовая доля сульфатов не более 0,15 процентов;
массовая доля хлоридов не более 0,15 процентов;
кислотность не более 0,8 процентов;
содержание воды не более 1,5 процентов.
родукт будет выпускаться в форме белого порошка, без инородных включений.
Требования к технологии:
основана на осаждении из водного раствора. На первой стадии получают стеарата натрия, путем прибавления стеариновой кислоты к водному раствору гидроксида натрия. На второй стадии осаждают стеарат магния путем добавления водного раствора хлорида магния к раствору, полученному на первой стадии. Осадок стеарата магния отделяют фильтрованием и промывают водой и ацетоном для удаления примесей. Отмытый порошок высушивают
31 декабря 2040 г.
да
неприменимо
в перспективе планируется увеличение мощности технологической линии с диверсификацией продукции по степени чистоты и целевому потреблению:
для фарм-промышленности (наибольшая степень чистоты), для пищевой промышленности и для технических целей
1
258.
Технология производства 2,4 2,6-толуилендиизо ционатов
Органические соединения с азотсодержащими функциональными группами
20.14.4
продукция должна соответствовать следующим техническим характеристикам:
2,4 2,6-динитротолуол технический - плавленный продукт от желтого до светло-коричневого цвета.
2,4 2,6-толуилендиамин - бесцветные кристаллы, растворимые в воде, этаноле, диэтиловом эфире.
2,4 2,6-толуилендиизоционат - бесцветная или бледно-желтая жидкость с температурой плавления около 22 градусов Цельсия и характерным едким запахом
31 декабря 2040 г.
да
неприменимо
заявленная технология имеет большой потенциал развития и обеспечивает производство широкого спектра толуилендиаминов и толуилендиизоционатов
1
259. <*>
Технология производства реагента для обработки осадков сточных вод и сельскохозяйственных отходов
соединения с аминной функциональной группой
20.14.41
технические характеристики:
показатель pH - 8;
плотность - 1.0-1.1;
массовая доля основного действующего вещества - 30 процентов Требования к технологии:
Гидролиз белоксодержащего сырья с последующей модификацией полученного гидролизата
5 июня 2050 г.
да
обязательно
значительный объем рынка вкупе с отсутствием крупных игроков и нерешенностью проблемы переработки и утилизации илового осадка сточных вод и сельскохозяйственных отходов наделяют технологию весьма существенным потенциалом развития. Поскольку белковый гидролизат является ценным источником аминокислот, то реагент далеко не единственный вариант развития указанной технологии. Уже в настоящее время на основе данной технологии имеется возможность получения составляющих элементов для моющих средств, производства средств дезинфекции, средств для септиков. Рассматривается возможность производства линейки фунгицидов и пестицидов, проводятся необходимые исследования
2
260.
Технология получения изопропиламина
моноамины ациклические и их производные, соли этих соединений
20.14.41.110
технические характеристики:
содержание основного вещества не менее 99,7 процентов;
аммиак - не более 0,05 процентов;
диизопропиламин - не более 0,05 процентов;
2-пропанол - не более 0,1 процентов;
ацетон - не более 0,01 процентов;
воды - не более 0,1 процентов. Требования к технологии:
технология предполагает синтез изопропиламина из изопропилового спирта
31 декабря 2040 г.
да
неприменимо
в перспективе в случае благоприятной рыночной конъюнктуры мощность может быть увеличена в два раза за счет запуска второй линии производства. Кроме того, варьирование технологических параметров процесса позволяет синтезировать помимо основного продукта диизопропиламин, который также может представлять рыночную ценность
1
261.
Технология получения этилендиамина и его гомологов
полиамины ациклические и их производные, соли этих соединений
20.14.41.120
характеристики этилендиамина должны быть не хуже, чем в ТУ 6-02-622-86. Выпуск продукции с качеством не хуже иностранных аналогов. Требования к технологии:
В основу технологии положена реакция аммонолиза 1,2 - дихлорэтана аммиаком, обеспечивающая больший выход целевого продуктов при проведении процесса в оптимальных условиях, по сравнению с другими методами, в первую очередь с методом каталитического восстановительного аминирования моноэтаноламина
31 декабря 2035 г.
да
неприменимо
потенциал присутствует - полное извлечение и реализация всех этиленаминов, в том числе пиперазина
1
262.
Технология получения толуилен-диизоцианата и метилендифенил-диизоцианата, полиэфирных полиолов
изоцианаты и соединения прочие, содержащие другие азотсодержащие функциональные группы
20.14.44.130
технические характеристики:
толуилен-диизоцианат и метилендифенил-диизоцианат с содержанием основного вещества более 99,9 процентов и с содержанием гидролизуемого хлора -
0,0008 процентов -
0,0010 процентов. качество изоцианатных и полиольных компонентов для получения полиуретанов должно соответствовать образцам лучших мировых аналогов компаний BASF, Bayer, Dow. Требования к технологии:
ароматические диизоцианаты получают фосгенированием соответствующего ароматического диамина, полученного конденсацией формальдегида с толуидином (для толуилен-диизоцианата) или с анилином (в случае метилендифенил-диизоцианата)
31 декабря 2035 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
создание сырьевой базы для получения полиуретанов может способствовать развитию высокотехнологичных пластиков. Освоение производства многотоннажных ароматических диизоцианатов может служить базой для разработки высокомаржинальных малотоннажных алифатических изоцианатов (гексаметилендиизоцианат и изофорондиизоцианат)
3
263.
Технология производства метилендифенилдиизоцианатата
изоцианаты и прочие соединения, содержащие другие азотсодержащие функциональные группы
20.14.44.130
по основным показателям продукт должен соответствовать импортным аналогам.
По динамической вязкости высокофункциональной марки продукт должен превосходить ряд импортных аналогов, что обеспечивается способом производства полиамина.
Технологический процесс включает производство полиамина путем конденсации анилина и формальдегида в присутствие солянокислого катализатора;
производство фосгена путем каталитического синтеза моноокиси углерода и хлора;
производство метилендифенилдиизоцианатата путем фосгенирования полиамина. Интенсификация процесса обеспечивается высокоэффективным смешением компонентов в специализированных смесителях
1 июня 2035 г.
да
неприменимо
после обеспечения выпуска базовой и высокофункуциональной марок планируется освоение специализированных марок метилендифенилдиизоцианатата для производства термоплатсичных полиуретанов, клеев и покрытий, а также выпуск чистого метилендифенилдиизоцианатата логистика которого существенно затруднена (транспортировка в криоконтейнерах) и потребление в Российской Федерации ограничено и составляет не более 3 процентов общего потребления метилендифенилдиизоцианатата в Российской Федерации при среднемировом потреблении на уровне 15 процентов от общего потребления метилендифенилдиизоцианатата
1
264.
Технология получения кремнийорганических мономеров бесхлорным способом
соединения элементоорганические прочие
20.14.51.190
фенилтриалкоксисиланы наряду с фенилтрихлорсиланом должны отвечать следующим качественным показателям:
содержание основного вещества не менее 99,9 процентов, нафталинов не более 10 ppm.
Диметилдиалкокси(метокси- либо этокси-) силаны по аналогии с диметилдихлорсиланом должны иметь следующие качественные показатели:
содержание основного вещества не менее 99,0 процентов, метилдиалкоксисиланов не более 0,05 процентов, триметилалкоксисиланов не более 0,1 масс процентов.
Метилтриалкокси(метокси- либо этокси-) силаны по аналогии с метилтрихлорсиланом должны иметь следующие качественные показатели:
содержание основного вещества не менее 99,0 процентов, триметилалкоксисиланов не более 0,1 процентов, диметилдиалкоксисиланов не более 1,0 процентов, метилдиалкоксисиланов не более 0,05 процентов.
31 декабря 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
переход к передовым энергоэффективным производственным технологиям, позволит снизить негативное воздействие на окружающую среду
3
265.
Технология получение диметилкарбоната нефосгенным способом с использованием МеОН, CO и O2
диметилкарбонат
20.14.53
технические характеристики продукта:
прозрачная жидкость с цветностью (по шкале APHA) не более 5 и чистотой не менее 99,9 процентов.
Требования к технологии:
получение диметилкарбонат путем окислительного карбонилирования метанола
31 декабря 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
вопрос о дальнейшем развитии (усовершенствовании) технологии получения диметилкарбоната будет решаться после строительства и запуска установки в эксплуатации и привлечения научно-исследовательской организации
2
266.
Технология безацетиленового производства высококачественного бутил-н-винилового эфира
эфиры простые, пероксиды органические, эпоксиды, ацетали и полуацетали;
соединения органические прочие
20.14.6
содержание винил н-бутилового эфира не менее 99,0 процентов.
Требования к технологии:
инновационная экологически и взрывопожаробезопасная технология, основанная на двухстадийной последовательности превращений
31 декабря 2035 г.
да
неприменимо
дальнейшее развитие технологии может быть связано с созданием производств продукции последующих переделов, в том числе Полибутил-n-винилового эфира
1
267.
Технология малотоннажного производства линейки синтетических биоразлагаемых полимеров для систем доставки фармацевтических субстанций
соединения с альдегидной функциональной группой
20.14.61.000
химическая технология производства предполагает использование разработанной лабораторной методики синтеза из мономеров, без применения в качестве катализаторов тяжелых металлов и их запрещенных соединений. Контроль показателей качества PLGA, регламентируемых ГОСТ ИСО для биополимеров
1 января 2070 г.
да
неприменимо
технология малотоннажного производства линейки синтетических биоразлагаемых полимеров PLA, PLGA для систем доставки фармацевтических субстанций позволит использовать полимеры для разработки технологии производства шовных нитей, имплантатов, и элементов тканеинженерных конструкций для ортопедии. Разработка и выпуск новых формуляций лекарственных средств с замедленным высвобождением субстанций по DDS технологии для более высокой эффективности терапии за счет рационального применения
1
268.
Технология производства альдегидных растворов на основе концентрированного формалина и метанола
соединения с альдегидной функциональной группой
20.14.61.000
растворы должны быть прозрачными и стабильными при хранении - не мутнеть и не образовывать осадков.
Гарантийный срок хранения растворов составляет 3 (три) месяца при условии соблюдения условий хранения и транспортировки. Альдегидные растворы на основе концентрированного формалина и метанола по ТУ 20.14.61-014-58242280-2018. Требования к технологии:
альдегидные растворы производятся из концентрированного малометанольного формалина путем смешения компонентов с добавлением стабилизатора по четко регламентированной рецептуре и четким соблюдением температурного режима в процессе производства.
31 декабря 2069 г.
да
обязательно
освоение технологии производства растворов альдегидных технических модифицированных, позволит производить продукцию в соответствии с ТУ 20.14.61-014-58242280-2018. Наличие систем комплексной механизации и автоматизации производственных процессов, дистанционного контроля и мониторинга параметров технологического процесса позволит достичь высокого качества производимой продукции, соответствующей международным стандартам качества, что в перспективе делает ее конкурентной на международном рынке
2
269.
Технология производства формалина металлооксидным методом путем разбавления/смешения требуемых компонентов состава с концентрацией 37 процентов
формальдегид
20.14.61.000
формалин с концентрацией 37 процентов по ГОСТ 1625-2016 "Формалин технический". Требования к технологии:
метод разбавления/смешения требуемых компонентов состава
31 декабря 2069 г.
да
обязательно
Освоение технологии производства формалина, позволит производить продукцию в соответствии с ГОСТ 1625-2016 "Формалин технический". Наличие систем комплексной механизации и автоматизации производственных процессов, дистанционного контроля и мониторинга параметров технологического процесса позволит достичь высокого качества производимой продукции, соответствующей международным стандартам качества, что в перспективе делает ее конкурентной на международном рынке
2
270.
Технология производства эпихлоргидрина из глицерина, получаемого из растительного сырья
эпихлоргидрин
20.14.63
технические характеристики продукта:
прозрачная жидкость с цветностью (по шкале APHA) не более 15 и чистотой не менее 99,8 процентов. Синтез проводится в две стадии:
на первой стадии глицерин гидрохлорируется газообразным хлористым водородом, на второй стадии, образовавшиеся дихрогидрины, превращаются в эпихлоргидрин с использованием щелочи
31 декабря 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
в настоящее время предложенная технология является наиболее совершенной технологией получения эпихлоргидрина из растительного сырья. После строительства и запуска установки возможно привлечение научно-исследовательских организаций для проработки вопроса усовершенствования технологии
2
271.
Технология получения метилаля
метилаль
20.14.63.110
технические характеристики:
содержание основного вещества не менее 92 процентов. Требования к технологии:
метилаль производится из доступного сырья - формалина и метанола, с использованием катализаторов кислотного типа
31 декабря 2035 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
потенциал присутствует - снижение себестоимости производства за счет модернизации каталитической системы
3
272.
Технология получения эпихлоргидрина и эпоксидиановых олигомеров
эпоксиды
20.14.63.130
технические характеристики:
содержание основного вещества:
не менее 99,9 процентов. В соответствии с требованиями ГОСТ 10587-84 "Смолы эпоксидно-диановые неотвержденные". Требования к технологии:
эпихлоргидрин получают высокотемпературным хлорированием пропилена под давлением с последующим гипохлорированием образовавшегося аллилхлорида, а затем дегидрохлорированием полученных дихлоргидринов. Эпоксидиановые олигомеры получают полиприсоединением эпихлоргидрина и бисфенола А в щелочной среде
31 декабря 2035 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
организация отечественного многотоннажного производства эпихлоргидрина и эпоксидиановых олигомеров позволит создать базу для развития отечественной эпоксидной полимерной промышленности. Эпоксиды отличаются высокой коррозионной и износостойкостью и незаменимы в некоторых отраслях промышленности
3
273. <*>
Технология биотехнологического производства ферментных препаратов для изготовления средств бытовой химии и применения в пищевой промышленности
ферменты и прочие органические соединения, не включенные в другие группировки
20.14.64.000
сухие и жидкие ферментные препараты, в соотвествии с ГОСТ 34440-2018 "Ферментные препараты для пищевой промышленности" и ГОСТ 34353-2017 "Препараты ферментные молокосвертывающие животного происхождения сухие"
1 июня 2035 г.
да
неприменимо
разработка и производство создаваемых в результате внедрения современной технологии ферментных препаратов будет осуществляться с привлечением действующего инновационного центра, включающего в себя лаборатории приборостроения, химические и технологические лаборатории, что предоставляет возможность дальнешего развития продуктовой линейки с улучшенными характеристиками. Центр оборудован синтетическим и аналитическим высокотехнологичным оборудованием, не имеющим аналогов в России
1
274.
Технология производства азотной кислоты по схеме УКЛ-7М
кислота азотная неконцентри-рованная в моногидрате
20.15.10.112
концентрация азотной кислоты - н/м 57,0 процентов;
массовая доля оксидов азота - н/б 0,07 процентов (в пересчете на тетраоксид диазота)
31 декабря 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
имеется потенциальная возможность увеличить гидродинамическое совершенство схемы за счет локальных реконструкций абсорбции и очистки выхлопных газов. Имеется потенциальная возможность снизить выбросы NOx и CO усовершенствованием каталитической очистки хвостовых газов и внедрением новых катализаторов
2
275.
Технология производства неконцентрированной азотной кислоты на базе агрегата УКЛ 7-76
кислота азотная неконцентри-рованная в моногидрате
20.15.10.112
по физико-химическим показателям кислота азотная неконцентрированная должна соответствовать требованиям ГОСТ Р 53789-2010 высшего и первого сорта "Кислота азотная неконцентрированная":
массовая доля азотной кислоты не менее 57,0 процентов/56,0 процентов. массовая доля оксидов азота в пересчете на тетраоксид диазота не более 0,07 процентов/0,1 процентов. Массовая доля остатка после прокаливания не более 0,004 процентов/0,02 процентов.
Требования к технологии:
Технология производства основана на методе каталитического окисления аммиака кислородом воздуха на платино-родиево-палладиевом катализаторе с последующей абсорбцией оксидов азота конденсатом водяного пара, низкотемпературной очисткой отходящих хвостовых газов от оксидов азота и рекуперацией тепловой энергии очищенных хвостовых газов
27 мая 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
технология представляет собой энерготехнологический цикл с замкнутым энергетическим балансом. Помимо использования тепла экзотермических реакций процесса для подогрева технологических потоков, осуществляется рекуперация тепла и энергии отходящих газов производства - хвостовых газов в высокотемпературной газовой турбине, которая является приводом газотурбинного агрегата, подающего воздух на технологический процесс производства. Ресурсо- и энергосберегающая технология, обеспечивающая высокие экологические характеристики процесса. Соответствие ИТС НДТ 2-2015 "Производство аммиака, минеральных удобрений и неорганических кислот"
2
276.
Технология получения аммиака методом паро-воздушного риформинга на высокоактивных катализаторах и каталитической очистки дымовых газов, с энергопотреблением не более 7.04 Гкал на метрическую тонну аммиака
аммиак
20.15.10.130
аммиак сжиженный технический марка А ГОСТ 6221-90 "Аммиак безводный сжиженный".
Требования к технологии:
низкое потребление природного газа, низкие капитальные затраты за счет применения современных решений в области парового риформинга природного газа и синтеза, а также высокоактивных катализаторов
3 июня 2050 г.
Да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
прорабатываются изменения в технологическом процессе для увеличения производительности. При этом не происходит потерь в качестве и процессы не выходят за рамки экологических требований. Разработана технология выделения и получения водородного газа высокой чистоты (вплоть до 99,9 процентов), необходимого для нужд предприятия. Разработана схема внедрения "Установки получения жидкой углекислоты" в технологию, что позволяет получить жидкую углекислоту для пищевой промышленности. Реализуется проект по дальнейшей переработке Аммиака в Карбамид, Аммиака в азотную кислоту и аммиачную селитру
2
277.
Технология получения аммиака по двухстадийному процессу, включающему высокотемпературный каталитический процесс парового и автотермического риформинга метана или попутного нефтяного газа с получением синтез-газа, а также процесс получения аммиака из синтез-газа при высоком давлении
аммиак
20.15.10.130
качество продукции в соответствии с ГОСТ 6221-90 "Аммиак безводный сжиженный". Уровень стоков и выбросов в атмосферу в соответствии действующим российским законодательством.
01 июня 2045
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
стандартная практика подразумевает оказание лицензиаром технической поддержки на этапе эксплуатации производства, что подразумевает доступ ко всем технологическим улучшениям, доступным для технологии. Это позволяет сохранять конкурентоспособность на уровне лучших доступных технологий продолжительное время
2
278.
Технология производства аммиака
аммиак
20.15.10.130
массовая доля аммиак - н/м 99,9 процентов;
массовая доля воды - н/б 0,1 процентов. Требования к технологии:
Гидросероочистка природного газа гидрированием серусодержащих компонентов газа до сероводорода и его хемосорбция, паровая и паровоздушная конверсия природного газа, средне- и низкотемпературная конверсия оксида углерода, криогенная очистка конвертированного газа от диоксида углерода, компрессия азото-водородной смеси. Синтез аммиака
4 июня 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
имеется потенциальная возможность при использовании криогенного способа выделения диоксида углерода, что позволяет значительно снизить затраты водорода на последующее метанирование
2
279.
Технология производства аммиака из природного газа мощностью до 3000 тонн/сутки в однолинейном агрегате на базе технологии KBR (с применением технологии Purifier)
аммиак
20.15.10.130
технические характеристики:
аммиак марка А:
выбросы азота диоксид и азота оксида суммарно < 0,400 кг/т;
углерода оксид CO < 0,78 кг/т. Норма расхода природного газа 972 нм3/т. Технология предусматривает потребление аммиака на уровне 567 кг/т в пересчете на 100 процентов аммиака
31 декабря 2040 г.
да
необязательно, принимая во внимание сложившуюся практику взаимодействия производителей аммиака с лицензиарами, в случае необходимой дальнейшей адаптации технологии к новым потребностям рынка, инициатор проекта имеет права на создание результатов интеллектуальной деятельности без дополнительных процедур по приобретению таких полномочий
развитие технологии в будущем возможно в двух основных направлениях:
дальнейшее снижение энергоемкости и себестоимости производства продукции аммиака и карбамида, за счет внедрения более современных технологий и оборудования с применением полной автоматизации процесса;
дальнейшее развитие производства удобрений на основе получаемых продуктов аммиака и карбамида. Потенциал возможен в применении новых материалов, катализаторов устойчивых к агрессивным средам, налипанию, более дешевых и эффективных. Повышение эффективности производства может быть связано с усовершенствованием основного технологического оборудования (компрессора, насосов, теплообменно/котлового оборудования), что позволит усовершенствовать процессы перекачки и компримирования, снизив при этом удельные затраты, необходимые для превращения кинетической энергии в потенциальную на приводах компрессорного и насосного оборудования, улучшить теплопередачу и массообменные процессы, тем самым позволит применять менее металлоемкие аппараты. Актуальным остается вопрос эффективной рекуперации тепла, выделяемого в ходе химических реакций. Весь комплекс проводимых улучшений, должен быть направлен на снижение ресурсозатрат и повышение экологичности производства
2
280.
Технология производства аммиака из продувочных и танковых газов
аммиак
20.15.10.130
аммиак жидкий технический:
аммиак - не менее 99,9 процентов;
вода (метод Фишера) - не более 0,1 процентов;
масло - не более 2 мг/ дм3;
железо - не более 1 мг/ дм3, соответствие ГОСТ 6221-90 "Аммиак безводный сжиженный". Требования к технологии:
технология производства аммиака из продувочных и танковых газов
28 марта 2040 г.
да
обязательно
Технология одновременного извлечения аммиака из продувочных и танковых газов позволяет увеличить производительность агрегата аммиака и улучшить экономические и экологические показатели производства
2
281.
Технология производства аммиака по технологии CASALE
аммиак
20.15.10.130
технические характеристики:
массовая доля аммиака не менее 99,9 процентов в соответствии с ГОСТ 6221-90 "Аммиак безводный сжиженный". Аммиак безводный сжиженный. Требования к технологии:
исходным сырьем для производства аммиака и водорода является природный газ. Технология аммиака Casale включает следующие стадии:
паровая каталитическая конверсия метана, конверсия оксида углерода, очистка от диоксида углерода, метанирование, синтез аммиака
27 мая 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
технология имеет возможность дальнейшего развития с увеличением мощности и эффективности, с учетом появления нового энергоэффективного оборудования, катализаторов и материалов.
2
282.
Технология производства аммиака по технологии Haldor Topsoe
аммиак
20.15.10.130
технические характеристики:
массовая доля аммиака не менее 99,9 процентов в соответствии с ГОСТ 6221-90 "Аммиак безводный сжиженный". Аммиак безводный сжиженный. Требования к технологии:
технология аммиака от Haldor Topsoe включает следующие стадии:
паровая каталитическая конверсия метана, конверсия оксида углерода, очистка от CO2, метанирование, синтез аммиака
27 мая 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
технология имеет возможность дальнейшего развития с увеличением мощности и эффективности, с учетом появления нового энергоэффективного оборудования, катализаторов и материалов
2
283.
Технология производства аммиака по технологии KBR
аммиак
20.15.10.130
технические характеристики:
массовая доля аммиака не менее 99,9 процентов в соответствии с ГОСТ 6221-90 "Аммиак безводный сжиженный". Аммиак безводный сжиженный. Требования к технологии:
технология аммиака от KBR включает следующие стадии:
паровая каталитическая конверсия метана, конверсия оксида углерода, очистка от CO2, метанирование, осушка и криогенная очистка синтез-газа, синтез аммиака
27 мая 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
технология имеет возможность дальнейшего развития, с увеличением мощности и эффективности, с учетом появления нового энергоэффективного оборудования, катализаторов и материалов
2
284.
Технология производства аммиака по технологии Linde Ammonia Concept (LAC)
аммиак
20.15.10.130
технические характеристики:
массовая доля аммиака не менее 99,9 процентов в соответствии с ГОСТ 6221-90 "Аммиак безводный сжиженный". Аммиак безводный сжиженный. Требования к технологии:
исходным сырьем для производства аммиака и водорода является природный газ. Технология аммиака LINDE включает следующие стадии:
паровая каталитическая конверсия метана, конверсия оксида углерода, короткоцикловая абсорбция или блок отмывки азотом, синтез аммиака
27 мая 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
технология имеет возможность дальнейшего развития, с увеличением мощности и эффективности, с учетом появления нового энергоэффективного оборудования, катализаторов и материалов
2
285.
Технология гранулирования карбамида в аппарате кипящего слоя
мочевина (карбамид)
20.15.31.000
технические характеристики:
массовая доля азота - н/м 46,2 процентов;
массовая доля воды - н/б 0,3 процентов;
массовая доля биурета - н/б 0,9 процентов
4 июня 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
реализуемой технологией предусмотрено развитие по следующим направлениям:
организация производства карбамида пролонгированного действия, обработанного ингибитором уреазы;
организация производства гранулированного карбамида с серой;
организация производства промышленного карбамида качества AdBlue
2
286.
Технология интегрированного производства аммиака из природного газа мощностью до 3000 тонн/сутки в однолинейном агрегате на базе технологии KBR (с применением технологии Purifier) и карбамида мощностью 4000 тонн/сутки по технологии UREA-2000 + для синтеза карбамида с применением стриппинг-процесса в токе диоксида углерода и грануляции карбамида в кипящем слое по технологии компании Stamicarbon
мочевина (карбамид)
20.15.31.000
технологические показатели аммиака марки А:
выбросы азота диоксид и азота оксид суммарно (NOx) < 0,400 кг/т;
углерода оксида:
CO < 0,78 кг/т. Продукт должен соответствовать ГОСТ 20181-2010 "Карбамид гранулированный"
Технология предусматривает потребление аммиака на уровне 567 кг/т в пересчете на 100 процентов аммиака
31 декабря 2040 г.
да
необязательно, принимая во внимание сложившуюся практику взаимодействия производителей аммиака и карбамида с лицензиарами, в случае необходимой дальнейшей адаптации технологии к новым потребностям рынка, инициатор проекта имеет права на создание результатов интеллектуальной деятельности без дополнительных процедур по приобретению таких полномочий
развитие технологии в будущем возможно в двух основных направлениях:
дальнейшее снижение энергоемкости и себестоимости производства продукции аммиака и карбамида, за счет внедрения более современных технологий и оборудования с применением полной автоматизации процесса на базе Advanced Process Control (APC);
дальнейшее развитие производства удобрений на основе получаемых продуктов аммиака и карбамида. Потенциал возможен в применении новых материалов, катализаторов устойчивых к агрессивным средам, налипанию, более дешевых и эффективных. Повышение эффективности производства может быть связано с усовершенствованием основного технологического оборудования, что позволит усовершенствовать процессы перекачки и компримирования, снизив при этом удельные затраты, необходимые для превращения кинетической энергии в потенциальную на приводах компрессорного и насосного оборудования, улучшить теплопередачу и массообменные процессы, тем самым позволит применять менее металлоемкие аппараты. Актуальным остается вопрос эффективной рекуперации тепла, выделяемого в ходе химических реакций.
2
287.
Технология получения гранулированного карбамида с применением стадий разложения карбамата аммония под давлением не более 2,5 Мпа, с использованием тепла конденсации газа и очистки отходящих газов с применением кислотной очистки
мочевина (карбамид)
20.15.31.000
технические характеристики должны соответствовать ГОСТ 2081-2010 "Карбамид". Марка Б:
гранулированный карбамид для сельского хозяйства, содержащий 0,2 процентов - 0,3 процентов влаги и катализаторов
3 июня 2050 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
реализованные в технологии Stamicarbon решения, направленные на использование тепла конденсации технологического газа для повышения концентрации раствора карбамида (принцип рекуперации) адаптирован для применения в других технологических процессах, где используется процесс выпаривания. Применяемый в технологии Stamicarbon высокоэффективный скруббер с кислотной промывкой после модернизации планируется использовать на действующих производствах, где требуется глубокая очистка отходящих технологических газов от аммиака и пыли (содержание загрязняющих веществ в отходящем газе 10 мг/ку. м.). После реализации проекта вохможно использование карбамида для переработки в карбамидно-формальдегидный концентрат, карбамидно-формальдегидные смолы и производство комплексных минеральных удобрений
2
288.
Технология производства карбамида мощностью 4000 тонн/сутки по технологии UREA-2000 + для синтеза карбамида с применением стриппинг-процесса диоксида углерода и грануляции карбамида в кипящем слое по технологии компании Stamicarbon
мочевина (карбамид)
20.15.31.000
технические характеристики должны соответствовать ГОСТ 20181-2010 "Карбамид гранулированный". Технология предусматривает потребление аммиака на уровне 567 кг/т в пересчете на 100 процентов аммиака
31 декабря 2040 г.
да
необязательно, принимая во внимание сложившуюся практику взаимодействия производителей карбамида с лицензиарами, в случае необходимой дальнейшей адаптации технологии к новым потребностям рынка, инициатор проекта имеет права на создание результатов интеллектуальной деятельности без дополнительных процедур по приобретению таких полномочий. В результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
развитие технологии в будущем возможно в рамках улучшения технологического процесса и потребностей, выявленных в ходе промышленной эксплуатации агрегата
2
289.
Технология производства карбамида по технологии CASALE
карбамид
20.15.31.000
технические характеристики в соответсвии с ГОСТ 2081-2010 "Карбамид" с массовой долей азота в пересчете на сухое вещество, 46,2 процентов;
массовая доля биурета 1,4 процентов - 1,5 процентов. Технология обеспечивает возможность выдачи в качестве полуфабриката водного раствора карбамида для получения смеси водных растворов аммиачной селитры и карбамида Требования к технологии:
Метод производства карбамида основан на проведении синтеза карбамида под давлением из углекислого газа и аммиака. В основе производства лежит стриппинг-процесс с применением контура разветвленного потока и гранулирование в псевдоожиженном слое
27 мая 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
технология имеет возможность дальнейшего развития, с увеличением мощности и эффективности. С учетом появления нового энергоэффективного оборудования, оптимизации отдельных стадий процесса
2
290.
Технология производства карбамида по технологии Snamprogetti (Saipem)
карбамид
20.15.31.000
техничесские характеристики гранулированного карбамида:
массовая доля азота в пересчете на сухое вещество, 46,2 процентов, в соответсвии с ГОСТ 2081-2010 "Карбамид". Требования к технологии:
исходным сырьем является аммиак и диоксид углерода, синтез карбамида производится с применением стриппинг-процесса, полным рециклом диоксида углерода и аммиака и гранулированием карбамида в псевдоожиженном слое
27 мая 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
технология имеет возможность дальнейшего развития, с увеличением мощности и эффективности. С учетом появления нового энергоэффективного оборудования, оптимизации отдельных стадий процесса
2
291.
Технология производства карбамида по технологии Stamicarbon
карбамид
20.15.31.000
технические характеристики гранулированного карбамида:
массовая доля азота в пересчете на сухое вещество 46,2 процентов. ГОСТ 2081-2010 "Карбамид".
Требования к технологии:
исходным сырьем является аммиак и диоксид углерода, синтез карбамида производится с применением стриппинг-процесса, полным рециклом диоксида углерода и аммиака и гранулированием карбамида в псевдоожиженном слое
27 мая 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
технология имеет возможность дальнейшего развития, с увеличением мощности и эффективности. С учетом появления нового энергоэффективного оборудования, оптимизации отдельных стадий процесса
2
292.
Технология производства карбамида со стриппинг процессами
мочевина (карбамид)
20.15.31.000
технические характеристики раствора карбамида должны соответствовать ГОСТ 2081-2010 "Карбамид" с массовой долей карбамида не менее 72 процентов, для последующей передачи его в отделение переработки для получения товарного продукта
4 июня 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
на базе реализуемой технологии возможна организация производства карбамида пролонгированного действия и карбамида промышленного назначения. В перспективе, увеличение производительности агрегата на 10 процентов - 15 процентов возможно без существенных инвестиций
2
293.
Технология производства карбамида, включающая получение плава карбамида, используя процесс синтеза карбамида из аммиака и углекислого газа с блоком очистки карбамида
карбамид гранулы
20.15.31.000
технические характеристики:
качество продукции в соответствии с ГОСТ 2081-2010 "Карбамид". Уровень стоков и выбросов в атмосферу в соответствии действующим российским законодательством. Расход аммиака не более 0,6 кг на 1 кг карбамида метанола
1 июня 2045 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
стандартная практика подразумевает оказание лицензиаром технической поддержки на этапе эксплуатации производства, что подразумевает доступ ко всем технологическим улучшениям, доступным для технологии. Это позволяет сохранять конкурентоспособность на уровне лучших доступных технологий продолжительное время
2
294.
Технология производства гранулированного сульфата аммония
сульфат аммония
20.15.32.000
технические характеристики сульфата аммония гранулированного:
массовая доля азота, в пересчете на сухое вещество, не менее 21 процентов, массовая доля воды, не более 0,3 процентов;
фракционный состав для высшего сорта, фракция 2,0 - 5,0 мм, не менее 90 процентов.
Требования к технологии: Сульфат аммония гранулированный получают методом прессования и последующего дробления.
27 мая 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
технология позволяет осуществлять производство конкурентоспособной на мировом рынке промышленной продукции. Мощность производства обеспечит развитие использования нового продукта в сельском хозяйстве, в том числе в личных подсобных хозяйствах и фермерских хозяйствах. Продукция соответствует мировым стандартам качества, применяется наиболее современная технология в мире. Технология производства гранулированного сульфата аммония с улучшенными потребительскими свойствами учитывает потребности рынка в расширении ассортимента серосодержащего удобрения
2
295.
Технология по комплексному производству азотной кислоты, раствора нитрата аммония и гранулированного нитрата аммония
нитрат аммония
20.15.33
кислота азотная неконцентрированная с массовой долей не менее 60 процентов. Раствор нитрата аммония с массовой долей аммиачной селитры не менее 93 процентов. pH (10 процентов водяного раствора), соответствующий ГОСТ 2-2013 с изменением N 1 "Селитра аммиачная". Требования к технологии:
Техпроцесс производства азотной кислоты основан на технологии с двойным давлением, разработанной CASALE. Метод производства селитры аммиачной основан на получении раствора селитры в трубчатом реакторе путем нейтрализации неконцентрированной азотной кислоты газообразным аммиаком
27 мая 2040 г.
да
обязательно
Основные характеристики процесса очень хорошо адаптированы к настоящим экономическим условиям отрасли минеральных удобрений, главным образом благодаря следующему:
его доказанная надежность, основанная на богатом опыте компании CASALE;
его высокая эффективность по аммиаку;
его низкие капитальные затраты;
его высокая степень рекуперации тепла;
его низкое содержание NOx в хвостовом газе, достигающееся за счет сочетания;
высокоэффективной абсорбции и избирательного каталитического восстановления. Философия проектирования компании CASALE основана на удовлетворении вышеуказанных ключевых потребностей, а количество установок, использующих эту технологию, - это мера успеха компании в достижении этих целей
2
296.
Технология получения азотной кислоты с двойным давлением и аммиачной селитры с гранулированнием в кипящем слое
нитрат аммония
20.15.33.000
чистое азотное удобрение с содержанием азота 26 процентов - 34,4 процентов, соответствующие высшему сорту по ГОСТ 2-201 "Селитра аммиачная"
3 июня 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
технологии производства азотной кислоты направленны на увеличение КОЭФФИЦИЕНТ ПОЛЕЗНОЙ ДЕЯТЕЛЬНОСТИ установки при низкой себестоимости продукции. Разработаная схема использования энергии нитрозного газа, который возвращает часть энергии на вал установки сокращает потребление энергии извне. Гибкая система внесения добавок в расплав нитрата аммония, рассматривается как технологическая схема для получения новых видов продуктов. На базе рассматриваемой технологии производства аммиачной селитры возможно получение селитры известково-аммиачной (CAN) с содержанием азота не более 28 процентов для реализации европейским потребителям. Так же возможна переработка селитры в комплексные минеральные удобрения
2
297.
Технология производства продукции на основе нитрата кальция, образующегося в производстве NPK и используемого для выпуска продукции различных марок для агрохимических и технических целей, включая безводный
соли двойные и смеси нитрата кальция и нитрата аммония
20.15.34
технические характеристики конечного продукта:
массовая доля нитрата кальция не менее 96 процентов;
кальция не менее 33 процентов;
азота общего не менее 17 процентов;
нитратного азота не менее 16,7 процентов;
воды не более 3,0 процентов. Статическая прочность гранул не менее 2 кгс/гранула. Требование к технологии:
Использование барабана-гранулятора с кипящим слоем за счет применения внутренних устройств:
стола кипящего слоя и системы распыления. Удельные расходные нормы потребления сырья, энергоресурсов и количество выбросов соответствуют лучшим мировым показателям
31 декабря 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
на внедряемой технологической линии возможно расширение выпускаемой продукции. Возможно увеличение производительности агрегата на 10 - 15 процентов без существенных инвестиций
2
298.
Технология производства из конверсионных нитрата аммония и карбоната кальция
смеси нитрата аммония с карбонатом кальция или прочими неорганическими веществами, не являющимися удобрениями
20.15.35.000
данная технология предполагает выпуск 10 различных марок, в т.ч. с содержанием серы 6,0 процентов;
прочность - н/м 4,0 МПа;
влажность - 0,3 процентов
31 декабря 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
на внедряемой технологической установке возможно существенное расширение ассортимента выпускаемой продукции в зависимости от исходных компонентов, включая получение удобрений, содержащих серу, микроэлементы, ингибиторы нитрификации, биостимуляторы, биодобавки, а также выпуск удобрений пролонгированного действия
2
299.
Технология производства карбамидо-аммиачной смеси по технологии Stamicarbon
удобрения азотные и смеси прочие
20.15.39
массовая доля общего азота 27,7 процентов - 32,3 процентов. Требования к технологии:
технология основана на получении азотной кислоты, нейтрализации ее аммиаком с получением раствора селитры, смешением растворов селитры и карбамида
27 мая 2050 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
технология потенциально обеспечивает выпуск широкого ассортимента продукции на дальнейших стадиях передела:
добавками микроэлементов, макроэлементов, стабилизаторов уреазного процесса и процесса нитрификации
2
300.
Технология производства азотного серосодержащего удобрения марки сульфата нитрата аммония
удобрения азотные и смеси прочие
20.15.39
удобрение азотное серосодержащее - простое аммиачно-нитратное удобрение, содержит около 26 процентов азота, 18 процентов в аммиачной и 6,65 процентов в нитратной форме и около 13 процентов серы.
Фракция
2,0 - 5,0 мм, не менее 90 процентов Требования к технологии:
метод производства основан на получении водного раствора аммиачной селитры путем нейтрализации неконцентрированной азотной кислоты под давлением газообразного аммиака с дальнейшим упариванием аммиачной селитры, смешиванием плава с кристаллическим сульфатом аммония и переработкой полученной суспензии в готовый продукт
27 мая 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
техногия позволяет осуществлять производство продукции, не имеющей аналогов, производимых на территории Российской Федерации
2
301.
Технология производства карбамидо-аммиачной смеси по технологии Stamicarbon
удобрения азотные и смеси прочие
20.15.39.000
массовая доля общего азота 27,7 - 32,3 процентов. Требования к технологии:
технология основана на получении азотной кислоты, нейтрализации ее аммиаком с получением раствора селитры, смешением растворов селитры и карбамида
27 мая 2050 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
технология потенциально обеспечивает выпуск широкого ассортимента продукции на дальнейших стадиях передела:
добавки микроэлементов, макроэлементов, стабилизаторов уреазного процесса и процесса нитрификации
2
302.
Технология производства продукции на основе нитрата кальция, образующегося в производстве и используемого для выпуска продукции различных марок для агрохимических и технических целей, включая безводный
удобрения азотные и смеси прочие
20.15.39.000
технические характеристики:
массовая доля:
азота общего не менее 15,5 процентов;
кальция не менее 19 процентов;
нитратного азота не менее 14,5 процентов;
аммонийного азота не более 1 процентов;
Статистическая прочность гранул не менее 4,2 кгс/гранула
4 июня 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
на внедряемой технологической линии возможно расширение выпускаемой продукции. Возможно увеличение производительности агрегата на 10 - 15 процентов без существенных инвестиций
2
303.
Технология производства обесфторенных
кормовых фосфатов
кормовые обесфторенные фосфаты
20.15.49
технические характеристики должны соответствовать действующим нормативными документами. Требования к технологии:
Метод производства - нейтрализация полифосфорной (обесфторенной) кислоты смесью мела с добавлением извести и с последующей сушкой продукта
31 декабря 2040 г.
да
обязательно
возможно увеличение производительности агрегата на 10 - 15 процентов без существенных инвестиций
2
304.
Технология производства хлорида калия (марки "Мелкий", "Гранулированный") галургическим или флотационным методом
удобрения калийные минеральные или химические
20.15.5
технические характеристики:
массовая доля хлорида калия - 95 процентов (в пересчете на оксид калия - 60 процентов);
массовая доля воды - 1,0 процентов (для марки "Мелкий");
0,5 процентов (для марки "Гранулированный")
31 декабря 2040 г.
да
необязательно, поскольку с учетом отраслевой специфики, разработчиками технологии производства хлористого калия являются сами инициаторы инвестиционных проектов или аффилированные с ними лица. Получение права на создание результатов интеллектуальной деятельности на основе результатов интеллектуальной деятельности, право использования которых в составе технологии производства хлористого калия должно быть получено инвестором, а также права на получение патентов на созданные результаты интеллектуальной деятельности не требуется, т.к. разработчик технологии производства хлористого калия вправе создавать результаты интеллектуальной деятельности и получать на них патенты без дополнительных процедур по приобретению таких полномочий
потенциал развития современной технологии присутствует. Применение методов математического моделирования для оптимизации и контроля процесса галургического обогащения, цифровая модель галургической фабрики с элементами искусственного интеллекта. Построение модели настройки производственной линии с целью снижения выхода несоответствующей продукции и оптимизации производственных затрат. Суть технического решения заключается в анализе данных и сопоставлении с установленными нормами расхода (руды, щелока, воды), разработке и предоставлении рекомендаций по оптимальному ведению технологического процесса. В процессе эксплуатации модель самообучается (самостоятельно вносит корректировки) за счет анализа отклика технологов на рекомендации. В результате внедрения модели планируется достигнуть увеличения показателя извлечения на 0,1 процентов
2
305.
Технология закачки сточных вод в изолированные пласты горных пород при производстве хлорида калия флотационным способом
хлорид калия
20.15.51.000
технические требования:
для хлористого калия марки "Мелкий":
массовая доля хлористого калия не менее 95 процентов, в пересчете на оксид калия не менее 60 м процентов, массовая доля воды не более 0,5 процентов;
для хлористого калия марки "Гранулированный":
массовая доля хлористого калия не менее 95 процентов, в пересчете на оксид калия - не менее 60 процентов, массовая доля воды не более 0,5 процентов.
Гранулометрический состав:
свыше 4 мм - не более 3 процентов;
от 2 до 4 мм - не менее 87 процентов;
от 1 до 2 мм - не более 8 процентов;
менее 1 мм - не более 2 процентов;
менее 0,5 мм - не более 0,5 процентов
31 декабря 2040 г.
да
необязательно, поскольку с учетом отраслевой специфики, разработчиками технологии размещения избыточных рассолов, образующихся при добыче и переработке флотационным способом калийно-магниевых солей вподсолевых горизонтах являются сами инициаторы инвестиционных проектов или аффилированные с ними лица. Получение права на создание результатов интеллектуальной деятельности на основе результатов интеллектуальной деятельности, право использования которых в составе технологии производства хлорида калия флотационным методом должно быть получено инвестором, а также права на получение патентов на созданные результаты интеллектуальной деятельности не требуется, т.к. разработчик технологии производства хлорида калия флотационным методом вправе создавать результаты интеллектуальной деятельности и получать на них патенты без дополнительных процедур по приобретению таких полномочий
перспектива внедрения на предприятиях, осуществляющих добычу и переработку калийно-магниевых солей. Развитие технологии в будущем возможно в рамках потребностей, выявленных в ходе промышленной эксплуатации метода размещения избыточных рассолов, образующихся при добыче и переработке калийно-магниевых солей, в глубоколежащих подсолевых горизонтах (улучшение технологического процесса). Потенциал развития технологии в разработке методов безопасного захоронения промышленных отходов (в том числе и радиационно-загрязненных) в глубоколежащих подсолевых и межсолевых горизонтах
3
306.
Технология обогащения молотого сильвинита флотационным способом, включающим сухое обесшламливание сильвинитовой руды от ангидрита (Ca2SO4) и глинистых шламов
хлорид калия
20.15.51.000
технические характеристики для хлористого калия марки "мелкий":
массовая доля хлористого калия - не менее 95 процентов, в пересчете на оксид калия не менее 60 процентов, массовая доля воды не более 0,5 процентов.
Технические характеристики для хлористого калия марки "гранулированный":
массовая доля хлористого калия не менее 95 процентов, в пересчете на оксид калия - не менее 60 процентов, массовая доля воды не более 0,5 процентов.
Гранулометрический состав:
свыше 4 мм - не более 3 процентов;
от 2 до 4 мм - не менее 87 процентов;
от 1 до 2 мм - не более 8 процентов;
менее 1 мм - не более 2 процентов;
менее 0,5 мм - не более 0,5 процентов
31 декабря 2040 г.
да
необязательно, поскольку с учетом отраслевой специфики, разработчиками технологии производства хлорида калия флотационным методом являются сами инициаторы инвестиционных проектов или аффилированные с ними лица. Получение права на создание результатов интеллектуальной деятельности на основе результатов интеллектуальной деятельности, право использования которых в составе технологии сухого обесшламливания сильвинитовой руды при производстве хлорида калия флотационным методом должно быть получено инвестором, а также права на получение патентов на созданные результаты интеллектуальной деятельности не требуется, т.к. разработчик технологии производства хлорида калия флотационным методом вправе создавать результаты интеллектуальной деятельности и получать на них патенты без дополнительных процедур по приобретению таких полномочий
развитие технологии в будущем возможно в рамках потребностей, выявленных в ходе промышленной эксплуатации метода сухого обесшламливания сильвинитовой руды (улучшение технологического процесса)
3
307.
Технология производства хлорида калия галургическим методом
хлорид калия
20.15.51.000
технология позволяет производить продукты с разным содержанием полезных веществ. Технические характеристики:
массовая доля хлористого калия не менее 98 процентов, в пересчете на оксида калия не менее 62 процентов, массовая доля воды не более 0,5 процентов. Технические характеристики для хлористого калия марки "гранулированный":
массовая доля хлористого калия не менее 95 процентов, в пересчете на оксид калия - не менее 60 процентов, массовая доля воды не более 0,5 процентов. Гранулометрический состав:
свыше 4 мм - не более 3 процентов;
от 2 до 4 мм - не менее 87 процентов;
от 1 до 2 мм - не более 8 процентов;
менее 1 мм - не более 2 процентов;
менее 0,5 мм - не более 0,5 процентов.
Гранулометрический состав для хлористого калия марки "мелкий":
не нормируется
31 декабря 2040 г.
да
необязательно, поскольку с учетом отраслевой специфики, разработчиками технологии производства хлорида калия галургическим методом являются сами инициаторы инвестиционных проектов или аффилированные с ними лица. Получение права на создание результатов интеллектуальной деятельности на основе результатов интеллектуальной деятельности, право использования которых в составе технологии производства хлорида калия галургическим методом должно быть получено инвестором, а также права на получение патентов на созданные результаты интеллектуальной деятельности не требуется, т.к. разработчик технологии производства хлорида калия галургическим методом вправе создавать результаты интеллектуальной деятельности и получать на них патенты без дополнительных процедур по приобретению таких полномочий
основные направления развития технологии нацелены на повышение эффективности производства и снижение эмиссии в окружающую среду:
сухое дробление руды, снижающее энергозатраты, уменьшающее количество отходов, пылимость продукта;
проведение галургической переработки калийных руд с принудительным охлаждением в холодильной установке оборотной воды;
переработка калийных руд по комбинированной флотационно-галургической технологии с переработкой тонкозернистых солевых фракций галургическим способом и получением непылящего зернистого хлористого калия;
переработка калийных руд по комбинированной флотационно-галургической технологии с переработкой тонкозернистых солевых фракций галургическим способом и получением непылящего зернистого хлористого калия;
совместное обезвоживание галито-шламовых отходов, устраняющих складирование отходов в жидкой фазе. Возможно развитие в направлении внедрения ресурсосбережения, соблюдению требований энергетической эффективности и повышения потребительских качеств продукта, предотвращающее слеживаемость и обеспечивающее рассыпчатость продукта в процессе транспортировки и хранения
2
308.
Технология производства хлорида калия флотационным методом
хлорид калия
20.15.51.000
массовая доля хлористого калия не менее 98 процентов, в пересчете на оксида калия не менее 62 процентов, массовая доля воды не более 0,5 процентов.
Технические характеристики для хлористого калия марки "гранулированный":
массовая доля хлористого калия не менее 95 процентов, в пересчете на оксид калия - не менее 60 процентов, массовая доля воды не более 0,5 процентов.
Гранулометрический состав:
свыше 4 мм - не более 3 процентов;
от 2 до 4 мм - не менее 87 процентов;
от 1 до 2 мм - не более 8 процентов;
менее 1 мм - не более 2 процентов;
менее 0,5 мм - не более 0,5 процентов
31 декабря 2040 г.
да
необязательно, поскольку с учетом отраслевой специфики, разработчиками технологии производства хлорида калия флотационным методом являются сами инициаторы инвестиционных проектов или аффилированные с ними лица. Получение права на создание результатов интеллектуальной деятельности на основе результатов интеллектуальной деятельности, право использования которых в составе технологии производства хлорида калия флотационным методом должно быть получено инвестором, а также права на получение патентов на созданные результаты интеллектуальной деятельности не требуется, т.к. разработчик технологии производства хлорида калия флотационным методом вправе создавать результаты интеллектуальной деятельности и получать на них патенты без дополнительных процедур по приобретению таких полномочий
основные направления развития технологии нацелены на повышение эффективности производства и снижение эмиссии в окружающую среду:
сухое дробление руды, снижающее энергозатраты, уменьшающее количество отходов, пылимость продукта;
проведение галургической переработки калийных руд с принудительным охлаждением в холодильной установке оборотной воды;
переработка калийных руд по комбинированной флотационно-галургической технологии с переработкой тонкозернистых солевых фракций галургическим способом и получением непылящего зернистого хлористого калия;
переработка калийных руд по комбинированной флотационно-галургической технологии с переработкой тонкозернистых солевых фракций галургическим способом и получением непылящего зернистого хлористого калия;
совместное обезвоживание галито-шламовых отходов, устраняющих складирование отходов в жидкой фазе. Возможно развитие в направлении внедрения ресурсосбережения, соблюдению требований энергетической эффективности и повышения потребительских качеств продукта, предотвращающее слеживаемость и обеспечивающее рассыпчатость продукта в процессе транспортировки и хранения
2
309.
Технология производства хлористого калия (марки "Еврогран", "Г", "Н") галургическим или флотационным методами
хлорид калия (марки "Еврогран", "Г", "Н")
20.15.51.000
массовая доля хлорида калия - 95 процентов (в пересчете на оксид калия - 60 процентов);
массовая доля воды - 0,5 процентов
31 декабря 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
адаптивность технологии к качеству сырья по содержанию полезного компонента и нерастворимого остатка. Внедрение передовых технологий (оборудования) в производственный процесс:
колонные флотационные машины;
- большеобъемные флотационные машины. В результате внедрения планируется достигнуть увеличения производительности секции и энергоэффективности на 18 процентов (2 кВт/1 тонну) на этапе флотации. Применение методов математического моделирования для оптимизации и контроля процесса галургического обогащения, цифровая модель галургической фабрики с элементами искусственного интеллекта. Построение модели настройки производственной линии с целью снижения выхода несоответствующей продукции и оптимизации производственных затрат. Суть технического решения заключается в анализе данных и сопоставлении с установленными нормами расхода (руды, щелока, воды), разработке и предоставлении рекомендаций по оптимальному ведению технологического процесса. В процессе эксплуатации модель самообучается (самостоятельно вносит корректировки) за счет анализа отклика технологов на рекомендации. В результате внедрения модели планируется достигнуть увеличения показателя извлечения на 0,1 процентов
2
310.
Технология производства 98 процентов хлористого калия галургическим методом
хлорид калия
20.15.51.000
массовая доля хлорида калия - 98,2 процентов (в пересчете на оксид калия - н/м 62 процентов);
массовая доля воды - 0,5 процентов
31 декабря 2040 г.
Да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
возможность организации производства хлористого калия галургическим методом с массовой долей хлорида калия - 99 процентов и с содержанием хлорида натрия менее 1 процентов
2
311.
Технология производства 99 процентов хлористого калия галургическим методом
хлорид калия
20.15.51.000
массовая доля хлорида калия - 99 процентов (в пересчете на оксид калия - н/м 62,5 процентов);
массовая доля хлорида натрия - 1,0 процентов
31 декабря 2040 г.
да
неприменимо
применение методов математического моделирования для оптимизации и контроля процесса галургического обогащения, цифровая модель галургической фабрики с элементами искусственного интеллекта. Построение модели настройки производственной линии с целью снижения выхода несоответствующей продукции и оптимизации производственных затрат. Суть технического решения заключается в анализе данных и сопоставлении с установленными нормами расхода (руды, щелока, воды), разработке и предоставлении рекомендаций по оптимальному ведению технологического процесса. В процессе эксплуатации модель самообучается (самостоятельно вносит корректировки) за счет анализа отклика технологов на рекомендации. В результате внедрения модели планируется достигнуть увеличения показателя извлечения на 0,1 процентов
1
312.
Технология производства хлористого калия путем переработки избыточных рассолов галургическим методом выпаривания и кристаллизации
хлорид калия
20.15.51.000
технические характеристик продукции:
хлорида калия:
массовая доля хлористого калия не менее 98 процентов (в пересчете на оксид калия не менее 62 процентов), массовая доля воды не более 0,5 процентов.
Гранулометрический состав для хлористого калия марки "гранулированный" (массовая доля фракций):
свыше 4 мм - не более 3 процентов;
от 2 до 4 мм - не менее 87 процентов;
от 1 до 2 мм - не более 8 процентов;
менее 1 мм - не более 2 процентов;
менее 0,5 мм - не более 0,5 процентов.
Гранулометрический состав для хлористого калия марки "мелкий":
не нормируется
31 декабря 2040 г.
да
необязательно, поскольку с учетом отраслевой специфики, разработчиками подобных технологий производства являются сами инициаторы инвестиционных проектов или аффилированные с ними лица. Получение права на создание результатов интеллектуальной деятельности на основе результатов интеллектуальной деятельности, право использования которых в составе технологии должно быть получено инвестором, а также права на получение патентов на созданные результаты интеллектуальной деятельности не требуется, т.к. разработчик технологии вправе создавать результаты интеллектуальной деятельности и получать на них патенты без дополнительных процедур по приобретению
развитие технологии в будущем возможно в направлении повышения потребительских качеств продукта:
предотвращение слеживаемости и обеспечение 100 процентов рассыпчатости продукта в процессе транспортировки и хранения
3
313.
Технология получения сульфатов калия, бария из отработанной серной кислоты.
сульфат калия
20.15.52.000
технические характеристики сульфата калия:
концентрированное бесхлорное калийное удобрение, с массовой долей калия не менее 50 процентов, влаги не более 1 процентов.
Представляет собой мелкокристаллический порошок белого цвета с желтым или серым оттенком.
Не слеживается, транспортируется в мешках или насыпью.
Продукция должна соответствовать ГОСТ 11380-74 "Барий сернокислый"
31 декабря 2035 г.
да
обязательно
потенциал присутствует - снижение себестоимости выпуска продукции, расширение ассортимента.
2
314.
Технология получения нитратосодержащих уравновешенных NPK-удобрений за счет совместной нейтрализации упаренной экстракционной фосфорной кислоты и неконцентрированной азотной кислоты
удобрения, содержащие три питательных элемента:
азот, фосфор и калий
20.15.71
требования к технологии:
метод производства заключается в двухстадийной нейтрализации смеси экстракционной фосфорной кислоты и неконцентрированной азотной кислоты аммиаком (1 стадия - преднейтрализатор, 2 стадия - трубчатые реакторы) с получением пульпы фосфатов аммония, последующей грануляцией в аммонизаторе-грануляторе и сушкой продукта в сушильном барабане, классификацией высушенных гранул, дроблением крупной фракции, охлаждением, кондиционированием готового продукта, очисткой газов перед выбросом их в атмосферу
31 декабря 2040 г.
да
неприменимо, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
потенциал - увеличение выпуска готовой продукции. Расширение ассортимента продукции
1
315.
Технология производства удобрений на основе сернокислотной переработки фосфатного сырья по схеме ТР-АГ-СБ
удобрения, не включенные в другие группировки
20.15.7
технология производства комплексных удобрений на основе сернокислотной переработки фосфатного сырья по схеме ТР-АГ-СБ позволяет производить одновременно 4 вида продукции (Моноаммонийфосфат, Диаммонийфосфат, NP, NPK) и каждый из них в отдельности. Каждый из указанных видов продукции, в свою очередь, подразделяется на различные продуктовые марки, которые определяются соотношением питательных веществ. Технология производства комплексных удобрений на основе сернокислотной переработки фосфатного сырья по схеме ТР-АГ-СБ позволяет производить качественную продукцию, соответствующую требованиям к массовой доле питательных веществ, влажности, гранулометрическому составу, статической прочности гранул, рассыпчатости. Состав может регулярно корректироваться в зависимости от потребностей рынка.
31 декабря 2040 г.
да
необязательно, поскольку с учетом отраслевой специфики, лицензиары без дополнительных процедур по приобретению лицензиатами полномочий по созданию ими результатов интеллектуальной деятельности в отношении переданной технологии допускают в рамках контрактных условий возможность использования переданных ими результатов интеллектуальной деятельности для проектирования, инжиниринга, строительства и эксплуатации производственных объектов, а также усовершенствования технологического процесса и производственных объектов в рамках конкретного производственного предприятия
потенциал развития - в применении новых материалов, устойчивых к агрессивным средам, более дешевым и эффективным. Повышение эффективности производства может быть связано с усовершенствованием основного технологического оборудования (трубчатый реактор, емкостный реактор, аммонизатор-гранулятор), что позволит проводить реакцию нейтрализации без локальных пересыщений по пульпе, повысит содержание усвояемой формы питательных веществ, улучшит реологические свойства пульпы и, как следствие, физико-химические свойства готового продукта. Актуальным остается вопрос эффективной рекуперации тепла, выделяемого в ходе химических реакций. Весь комплекс проводимых улучшений, должен быть направлен на снижение ресурсозатрат и повышение экологичности производства. Также имеет актуальность частичная замена аммиака на аммиачную селитру, что позволит повысить содержание усвояемой формы питательных веществ и улучшить гранулометрический состав удобрения
2
316.
технология производства минеральных удобрений MAP/DAP//NPK по технологии "аммонизатор-гранулятор - сушильный барабан"
удобрения, содержащие три питательных элемента:
азот, фосфор и калий
20.15.71.000
данная технология предполагает выпуск широкого ассортимента продукции с различными химическими составом (30 марок), при этом фракционный состав гранул 2 - 4 мм - 90 процентов;
прочность гранул - 4,0 МПа
04 июня 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
на внедряемой технологической установке возможно существенное расширение ассортимента выпускаемой продукции, включая получение удобрений, содержащих микроэлементы, ингибиторы нитрификации, биостимуляторы, биодобавки, а также получение органоминеральных удобрений заданного состава
2
317.
Технология производства минеральных удобрений МАФ/ДАФ/NPS/ NPK по схеме "аммонизатор-гранулятор - сушильный барабан"
удобрения, не включенные в другие группировки
20.15.7
требования к технологии:
метод производства заключается в реакции нейтрализации экстракционной фосфорной кислоты аммиаком с получением пульпы фосфатов аммония, последующей грануляцией в аммонизаторе-грануляторе и сушкой продукта в сушильном барабане, классификацией высушенных гранул, дроблением крупной фракции, охлаждением, кондиционированием готового продукта, очисткой газов перед выбросом их в атмосферу
28 марта 2040 г.
да
неприменимо
потенциал технологии заключается в увеличение выпуска готовой продукции. Быстрый переход с выпуска одного продукта на выпуск другого
1
318.
Технология получения моноаммония-фосфата и диаммония фосфата большой единичной мощности по схеме с барабанным гранулятором-сушилкой
водородфосфат диаммония (диаммонийфосфат)
20.15.72.000
в соответствии с действующими нормативными документами (ГОСТ, ТУ, стандарт предприятия). Требования к технологии:
метод производства заключается в реакции нейтрализации экстракционной фосфорной кислоты аммиаком с получением пульпы фосфатов аммония, последующей грануляцией и сушкой продукта в аппаратах БГС (барабан - гранулятор - сушилка), классификацией высушенных гранул, дроблением крупной фракции, охлаждением, кондиционированием готового продукта, очисткой газов перед выбросом их в атмосферу
28 марта 2040 г.
да
неприменимо
потенциал технологии заключается в увеличение выпуска готовой продукции. Быстрый переход с выпуска одного продукта на выпуск другого
1
319.
Технология производства минеральных удобрений MAP/DAP//NPK (NPS, NPKS) по технологии "аммонизатор-гранулятор - сушильный барабан"
Водородфосфат диаммония (диаммонийфосфат)
20.15.72.000
высококачественная продукция со следующими характеристиками:
массовая доля азота аммонийног не менее 18 процентов;
массовая доля оксида фосфора не менее 46 процентов;
сумма питательных веществ не менее 64 процентов.
При этом фракционный состав гранул 2 - 5 мм - 90 процентов;
прочность гранул - 4,0 МПа
31 декабря 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
на внедряемой технологической установке возможно существенное расширение ассортимента выпускаемой продукции, включая получение удобрений, содержащих микроэлементы, ингибиторы нитрификации, биостимуляторы, биодобавки, а также получение органоминеральных удобрений заданного состава
2
320.
Технология производства водорастворимого монноаммонийфосфата
моноаммонийфосфат
20.15.73
технические характеристики:
высокое содержание водорастворимого фосфора (61 процентов оксида фосфора / 27 процентов фосформа);
высокая концентрация питательных веществ (азота к оксиду фософора равный 12:61)
31 декабря 2040 г.
да
обязательно
технология имеет потенциал повторного применения и дальнейшего развития с учетом дополнительных требований рынка данного продукта
2
321.
Технология производства минеральных удобрений MAP/DAP//NPK (NPS, NPKS) по технологии аммонизатор-гранулятор - сушильный барабан
моноаммонийфосфат
20.15.73
данная технология предполагает выпуск высококачественной продукции:
массовая доля азота аммонийного не менее 12 процентов;
массовая доля оксида фосфора не менее 52 процентов;
сумма питательных не менее 64 процентов. При этом фракционный состав гранул 2 - 5 мм - 90 процентов прочность гранул - 4,0 МПа
31 декабря 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
на внедряемой технологической установке возможно существенное расширение ассортимента выпускаемой продукции, включая получение удобрений, содержащих микроэлементы, ингибиторы нитрификации, биостимуляторы, биодобавки, а также получение органоминеральных удобрений заданного состава
2
322.
Технология производства моноаммонийфосфата
моноаммонийфосфат
20.15.73
технические характеристики должны соответствовать ГОСТ 18918-85 "Моноаммонийфосфат" и ТУ 113-08-642-90 (Россия). массовая доля водорастворимых фосфатов не менее 48 процентов;
массовая доля усвояемых фосфатов не менее 52 процентов;
массовая доля общего азота не менее 12 процентов;
массовая доля воды - не более 1,0 процентов - по ГОСТ (не более 1,5 процентов - по ТУ);
гранулометрический состав:
менее 1 мм - не более 3 процентов;
от 2 мм до 5 мм - не менее 95 процентов;
менее 6 мм - 100 процентов;
статическая прочность гранул - не менее 3 МПа;
рассыпчатость - 100 процентов.
Контрактные показатели (на экспорт):
массовая доля общих фосфатов - не менее 52 процентов;
массовая доля общего азота - 12 процентов 1 процентов;
массовая доля воды - не более 1,5 процентов;
гранулометрический состав:
от 2 мм до 5 мм - не менее 95 процентов;
более 6 мм - 0 процентов;
статическая прочность гранул - не менее 3 МПа;
рассыпчатость - 100 процентов;
пылимость на момент отгрузки:
не более 60 г/т
31 декабря 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
технология имеет потенциал в увеличении выпуска готовой продукции и повышение урожайности сельскохозяйственных культур
2
323.
Технология получения водорастворимого нитрата калия
нитраты калия
20.15.76
технические характеристики калия азотнокислого кристаллического:
нитратный азот не менее 13,7 процентов;
калий/оксид калия - не менее 38,2 процентов/46,2 процентов;
хлориды не более 0,02 процентов;
вода - не более 0,2 процентов;
нерастворимый осадок - не более 0,01 процентов;
рассыпчатость - 100
31 декабря 2040 г.
да
обязательно
технология имеет потенциал повторного применения и дальнейшего развития с учетом дополнительных требований рынка данного продукта
2
324.
Технология производства нитрата калия и хлорида аммония из хлорида калия и нитрата аммония путем двойной декомпозиции
удобрения, не включенные в другие группировки
20.15.7
технические характеристики нитрата калия сельскохозяйственного назначения (стандартная/премиальная марка):
содержание калия в пересчете на оксид калия не менее 45,5 процентов / 46,0 процентов;
содержание общего азота не менее 13,5 процентов/13,7 процентов;
содержание хлоридов не более 0,20 процентов/0,15 процентов;
содержание влаги - не более 0,2 процентов;
содержание нерастворимых веществ - не более 1000/500 ррм. Хлорид аммония (удобрение азотно-калийное марки 24:2,5):
содержание общего азота не менее 24,0 процентов;
содержание калия в пересчете на оксид калия не менее 2,5 процентов;
содержание влаги не более 0,5 процентов
31 декабря 2040 г.
да
необязательно, поскольку с учетом отраслевой специфики, лицензиары без дополнительных процедур по приобретению лицензиатами полномочий по созданию ими результатов интеллектуальной деятельности в отношении переданной технологии допускают в рамках контрактных условий возможность использования переданных ими результатов интеллектуальной деятельности для создания результатов интеллектуальной деятельности на их основе
развитие технологии в будущем возможно в двух основных направлениях:
повышение потребительских качеств продукта в части содержания питательных веществ при одновременном снижении содержания хлоридов и нерастворимых веществ с применением полной автоматизации процесса на базе Advanced Process Control;
создание производства комплексных NPK удобрений на основе получаемых продуктов хлорида аммония и нитрата калия (следующий передел).
2
325.
Технология производства минеральных удобрений MAP/DAP//NPK (NPS, NPKS) по технологии "аммонизатор-гранулятор - сушильный барабан"
удобрения минеральные или химические, содержащие два или три питательных элемента (азот, фосфор и калий), не включенные в другие группировки
20.15.79
данная технология предполагает выпуск широкого ассортимента продукции с различным химическим составом (30 марок), при этом фракционный состав гранул 2 - 4 мм - 90 процентов, прочность гранул - 4,0 МПа.
Требования к технологии: процесс серно-кислотного разложения апатитового концентрата
31 декабря 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
на внедряемой технологической установке возможно существенное расширение ассортимента выпускаемой продукции, включая получение удобрений, содержащих микроэлементы, ингибиторы нитрификации, биостимуляторы, биодобавки, а также получение органоминеральных удобрений заданного состава
2
326.
Технологии получения эпоксидных смол, в том числе полутвердых
смолы эпоксидные в первичных формах
20.16.40.130
технические характеристики:
высоковязкие, полутвердые и твердые (сухие и в растворе) эпоксидные смолы для общих клеев, покрытий и формовок, обладающий хорошей адгезией, отличными механическими свойствами, химической стойкостью и термостойкостью, применяется для антикоррозионного промышленного покрытия, морской краски, гражданского строительства, различных клеев и многое другое
31 декабря 2035
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
потенциал присутствует в снижении себестоимости производства за счет модернизации каталитической системы
3
327.
Технология получения эпоксидных смол на основе бисфенола А и эпихлоргидрина
эпоксидные смолы
20.16.40.130
синтез эпоксидных смол происходит посредством реакции поликонденсации бисфенола А и эпихлоргидрина. Эпоксидный эквивалент 182 - 192. Технические характеристики эпоксидных смол будут определены разработчиком технологии (лицензиаром)
31 декабря 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
в настоящее время предложенная технология является наиболее совершенной технологией получения эпоксидных смол. После строительства и запуска установки возможно дальнейшее развитие технологии в части расширения продуктового ассортимента
2
328.
Технология получения поликарбонатов безфосгенным способом
поликарбонат
20.16.40.140
технические характеристики продукта:
показатель текучести расплава (MFR):
6 - 35 г/10 мин (при 300 °C). Средняя молекулярная масса:
ориентировочно, 20000 - 33000 г/моль. Требования к технологии:
поликарбонат получается в результате прямой поликонденсации в расплаве мономеров бисфенола-А и дифенилкарбоната
1 января 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособного на внешнем рынке продукта
продукция, произведенная по данной технологии, соответствует мировым стандартам качества. В настоящее время предложенная технология является наиболее совершенной технологией получения поликарбонатов безфосгенным способом. После строительства и запуска установки возможно дальнейшее развитие технологии в части расширения марочного ассортимента
2
329. <*>
Технология производства насыщенных полиэфирных смол
полиацетали, прочие полимеры простых эфиров и эпоксидные смолы в первичных формах;
поликарбонаты, алкидные смолы, полимеры сложных эфиров аллилового спирта и прочие полимеры сложных эфиров в первичных формах
20.16.40
обеспечение полного соответствия планируемого к производству продукта показателям ведущих импортных аналогов по ключевым показателям (реакционной способности, вязкости, кислотному числу, температуре стеклования и т.п.), т.е. обеспечение качественного импортозамещения, а также наличие базы для оперативной разработки специальных рецептур SPR под конкретные потребности Российских производителей порошковых красок и красок для рулонного металлопроката.
Требования к технологии:
производство полиэфирных смол SPR на основе поликонденсации одновременно до 8 различных гликолей и органических кислот с возможностью четкого регулирования дозировки компонентов и выпуска как твердых марок смол (путем кристаллизации расплава смолы), так и жидких марок смол (путем смешения с минимально необходимым количеством растворителей)
31 декабря 2035 г.
да
неприменимо
планируемая к строительству технология имеет большой потенциал развития, что является неотъемлемым требованием к технологии, в частности:
расширение марочного ассортимента смол для полного удовлетворения потребностей Российских производителей красок в долгосрочной перспективе более 20 лет;
самостоятельная разработка новых марок смол без привлечения зарубежных лицензиаров;
расширение сырьевой базы за счет применения новых видов сырья - гликолей, кислот, растворителей, катализаторов и химических добавок, в настоящее время не используемых в производстве смол по причине малой доступности и высокой стоимости;
расширение ассортимента с выпуском ненасыщенных полиэфирных смол в случае роста рыночной потребности в них;
1
расширение ассортимента с вовлечением в производство смол, возобновляемого и рециклового сырья (вторичный пластик, сырье полученное с применением биотехнологий), что отражает тренды развития технологий в области производства полиэфиров на процессы устойчивого развития;
увеличение производительности на 10 - 35 процентов и снижение энергоемкости технологических линий на 5 - 20 процентов с использованием отечественных научно-технологических ресурсов за счет применения усовершенствований реакционного узла и системы онлайн-контроля технологического процесса
330. <*>
Технология синтеза биоразлагаемых полимеров на основе гомо- и сополимеров лактидов, лактонов, алкиленкарбонатов, ароматических, алифатических дикарбоновых кислот и диолов
полиацетали, прочие полимеры простых эфиров и эпоксидные смолы в первичных формах;
поликарбонаты, алкидные смолы, полимеры сложных эфиров аллилового спирта и прочие полимеры сложных эфиров в первичных формах
20.16.40
главными характеристиками для продукции согласно ГОСТ Р 54530-2011 "Ресурсосбережение. Упаковка.
Требования, критерии и схема утилизации упаковки посредством компостирования и биологического разложения" является разложение, в частности, упаковки (не менее 90 процентов от эталона) в компосте не более чем за шесть месяцев и экотоксичность (отсутствие токсического влияния на окружающую среду).
Экотоксичность определяется при компостировании путем проращивания семян по EN 13432. Кроме того, технические характеристики должны позволять перерабатывать их в определенные изделия (пленки, нити, стаканчики, ложки и пр.) с использованием стандартного технологического оборудования. Рекордно низкие значения по паропроницаемости (см3/м2-сут-атм): 3 - 18
1 января 2035 г.
да
неприменимо
технологии позволяют модифицировать продукт, создавая его модификации и композиции с иными свойствами (механическая прочность, термомеханические характеристики, удельное поверхностное электрическое сопротивление, паропроницаемость, проницаемость кислорода) не уступающими и превосходящими свойства существующих традиционных пластиков. Новый полимер способен потеснить на рынке такой традиционный полимер как Полиамид 6 применяемый в области получения барьерных пленок, в частности. Барьерные пленки обычно изготавливаются из нескольких слоев из разных материалов, так как на данный момент нет универсального полимера, который был бы непроницаемым сразу и для пара, и для кислорода, и для углекислого газа, и для азота в должной мере. Материал будет являться более универсальным, он потенциально один сможет заменить либо все слои, либо существенно сократить количество слоев в барьерной пленке
1
331. <*>
Технология ввода расплава вторичного полиэтилентерефталата в первичный с производством смешанного первично-вторичного гранулята
Полиэтилентерефталат в первичных формах
20.16.40.170
технический характеристики:
высокая степень очистки вторичного сырья от всех видов примесей, обеспечение соответствия качества смешанной гранулы качеству первичного продукта.
Требования к технологии:
технология ввода расплава вторичного полиэтилентерефталата в первичный с производством смешанного первично-вторичного гранулята
1 июня 2030 г.
да
необязательно, в результате внедрения технологии будет создано производство конкурентоспособной на внешнем рынке продукции
Доступность сырья:
В России собираемость полиэтилентерефталата из потоков ТБО и раздельного сбора составляет на сегодня около 30 процентов. Ожидается рост собираемости до 40 процентов к 2022 году и дальнейшего роста к 2025 году до 60 процентов. Переработка выделенного полиэтилентерефталата на сегодня преимущественно идет в направлении производства волокна и нетканных материалов из полиэтилентерефталата, что прерывает замкнутый цикл переработки полиэтилентерефталата, который, при использовании повторно для производства бутылочного гранулята.
Может быть переработан практически бесконечное число раз.
Производство бутылочного гранулята из вторичного полиэтилен терефталата является с одной стороны технически более сложным, с другой - более маржинальным направлением
2
332.
Технология производства полимерных композиционных материалов, применяемых для создания антикоррозионного монослойного защитного покрытия при заводской изоляции труб большого диаметра
полимеры пропилена и прочих олефинов в первичных формах
20.16.51
требования к основным техническим характеристикам:
Общая толщина покрытия, мм:
3,0 - 5,2. Прочность покрытия при ударе:
при температуре минус 45 °C, Дж/мм:
8 при температуре 60 °C, Дж/мм:
5 Адгезия покрытия, Н/см:
при температуре 23 °C:
> 300 при температуре 60 °C:
132-290 Площадь отслаивания покрытия при катодной поляризации после выдержки в течение 30 сут, 60 °C, см2:
2,9 - 4,3
Адгезия покрытия после выдержки в воде в течение 1000 ч, 80 градусов Цельсия, Н/см:
120 - 213
Относительное удлинение при разрыве полиэтиленого слоя при температуре минус 45 градусов Цельсия, процентов:
118 - 315
31 декабря 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособной на внешнем рынке продукции
разрабатываемый в рамках проекта материал и технология его получения имеют целевое назначение - повышение надежности антикоррозионного покрытия стальных магистральных трубопроводов, упрощение технологии нанесения защитного покрытия. Однако, при последующей адаптации рецептуры для новых применений, разрабатываемая технология может быть применена для других областей, таких как:
производство строительных материалов, изготовление металлополимерных профилированных листов для изготовления кровельных изделий, воздуховодов для агрессивных сред, нанесение защитных покрытий на трубы и металлорукава для кабельканалов;
защитные покрытия на стальную проволоку, предназначенной для изготовления габионов, защитные антикоррозионные покрытия корпусов морских судов
3
333.
Технология производства оксида пропилена прямым эпоксидированиемпропилена пероксидом водорода
оксид пропилена
20.16.51.110
технические характеристики:
легколетучая бесцветная прозрачная жидкость, без механических включений. Оксид пропилена, производимый по данной технологии, должен не уступать требованиям ГОСТ 23001-88 "Пропилена окись техническая", в том числе:
содержание основного вещества не менее 99,97 процентов;
массовая доля воды не более 0,01 процентов.
Требования к технологии:
технология производства оксида пропилена прямым эпоксидирования пропилена пероксидом водорода
31 декабря 2040 г.
да
обязательно
перспективы развития технологии в создание производства пропиленгликоля, полиэфиров и продукции на их основе - полиуретанов, композиционных материалов. Реализация проекта также будет способствовать интеграции различных предприятий химической промышленности Российской Федерации путем вовлечения выпускаемых ими сырьевых компонентов в технологические цепочки производства оксида пропилена
2
334.
Технология производства поливинилбутиловых эфиров различной молекулярной массы в присутствии двухкатализаторной системы галогенидов металлов IV и V групп в среде одноатомного спирта
полимеры винилацетата или прочих сложных виниловых эфиров и прочие виниловые полимеры в первичных формах
20.16.52
технические характеристики должны соответствовать нормативным документам, регламентирующим требования качества ТУ 0258-037-057885776-2000 "Винипол ВБ-2 и ВБ-3" и превышать эксплуатационные характеристики в сравнении с импортной загущающей присадкой Viskoplex по показателям:
эффективная термическая и механическая стабильность, более высокий загущающий эффект, обеспечение более низкой температуры в готовом масле.
Требования к технологии:
применяется процесс полимеризаци при производстве полиэфирных загущающих присадок, при производстве полиметакрилатных присадок применяется процесс этерификации полидисперсность полимера, который обеспечивает высокие загущающие и термомеханостабильные свойства относительно смазочных материалов, высокую чистоту продукта касательно фармакопейных продуктов
31 декабря 2040 г.
да
неприменимо
перспектива развития:
производство конкурентоспособной на мировом рынке промышленной продукции, со свойствами, превосходящими зарубежные аналоги, и не производимой на территории Российской Федерации. Потенциал разрабатываемой технологии в масштабировании производства полиэфиров
1
335.
Технология переработки отходов из полиамида 66 и компаундов в гранулы
полиамиды в первичных формах
20.16.54.000
гранула готовая для экструзионного производства восстановленная из компаунда на базе полиамида 66 должна соответствовать требованиями ГОСТ 31014-2002 "Профили полиамидные стеклонаполненные".
По параметрам прочности при разрыве и модулю упругости предлагаемая продукция превышает указанные требования на не менее чем на 15 процентов.
Основными отличиями от аналогов является высокое качество поверхности и возможность производить профиль со сложной геометрией и многокамерные профили.
Требования к технологии:
высокоэффективный и высокопроизводительный процесс переработки материала для последующего вторичного использования
21 декабря 2040 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособной на внешнем рынке продукции
в перспективе после внедрения технологии материал отечественного производства заменит не менее 80 процентов импортируемых аналогов, а также позволит поставлять на экспорт
3
336.
Технология производства полиамида 6
полиамид 6
20.16.54.000
технические характеристики:
относительная вязкость 2,47 - 3,45 ед.
Массовая доля влаги не более 0,06 процентов.
Требования к технологии:
метод производства полиамида ПА 6 основан на реакции полимеризации капролактама с последующей грануляцией, экстракцией и сушкой гранулята полиамида
27 мая 2050 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособной продукции
технология производства полиамида 6 учитывает потребности рынка в увеличении производственных мощностей и расширение ассортимента. Выпуск широкого ассортимента продукции:
нити полиамидной технического назначения, композиционных материалов, с различными свойствами (ударопрочные, морозостойкие, водостойкие, трудно горючие), текстильных волокон, полимерной пленки. Развитие перспективного наукоемкого направления - производство инженерных пластиков
2
337.
Технология производства аминоформальдегидных (пропиточных) смол
смолы карбамидоформальдегидные в первичных формах
20.16.55.120
основные технические характеристики получаемых Аминоформальдегидных (пропиточных) смол соответствуют ТУ 2223-003-58242280-2009.
Требования к технологии:
периодический способ производства смол с использованием специально подобранных добавок, модификаторов, пластификаторов и стабилизаторов
31 декабря 2069 г.
да
обязательно
наличие систем комплексной механизации и автоматизации производственных процессов, дистанционного контроля и мониторинга параметров технологического процесса позволит достичь высокого качества производимой продукции, соответствующей международным стандартам качества, что в перспективе делает ее конкурентной на международном рынке
2
338.
Технология производства карбамидо-меламино-формальдегидных смол
смолы карбамидоформальдегидные в первичных формах
20.16.55.120
основные технические характеристики карбамидоформальдегидных смол соответствуют ТУ 2223-007-58242280-2013.
Требования к технологии:
периодический способ производства смол с заданным мольным соотношением карбамида
31 декабря 2069 г.
да
обязательно
наличие систем комплексной механизации и автоматизации производственных процессов, дистанционного контроля и мониторинга параметров технологического процесса позволит достичь высокого качества производимой продукции, соответствующей международным стандартам качества, что в перспективе делает ее конкурентной на международном рынке
2
339.
Технология производства карбамидоформальдегидного концентрата - антислеживателя для грануляции карбамида и производства смол пониженной токсичности, включащая процесс поликонденсации концентрированного формалина с карбамидом при непрерывном производственном процессе
карбамидоформальдегидный концентрат
20.16.55.120
основные технические характеристики карбамидоформальдегидного концентрата соответствуют ТУ 20-16-55-120-013-58242280-2017
31 декабря 2069 г.
да
обязательно
наличие систем комплексной механизации и автоматизации производственных процессов, дистанционного контроля и мониторинга параметров технологического процесса позволит достичь высокого качества производимой продукции, соответствующей международным стандартам качества, что в перспективе делает ее конкурентной на международном рынке
2
340.
Технология производства карбамидоформальдегидного концентрата (формалин, стабилизированный карбамидом марки СТК)
смолы карбамидоформальдегидные в первичных формах
20.16.55.120
основные технические характеристики карбамидоформальдегидного концентрата (формалин, стабилизированный карбамидом), марки СТК соответствует ТУ 20-16-55-120-013-58242280-2017.
Требования к технологии:
процесс стабилизации концентрированного формалина карбамидом проходит в реакторе периодического действия с регламентированными и заданными свойствами для клиентов
31 декабря 2069 г.
да
обязательно
наличие систем комплексной механизации и автоматизации производственных процессов, дистанционного контроля и мониторинга параметров технологического процесса позволит достичь высокого качества производимой продукции, соответствующей международным стандартам качества, что в перспективе делает ее конкурентной на международном рынке
2
341.
Технология производство концентрированного 54 процентов формалина по металлооксидной технологии, карбамидно-формальдегидных смол и смол для плит древесных с ориентированной стружкой
смолы карбамидоформальдегидные в первичных формах
20.16.55.120
технические характеристики:
формалин концентрированный малометанольный ТУ 2417-010-58242280-2009, марка ФБМ54, а так же массовая доля остаточного метанола в продукте должна составлять не более 1,0 процентов
Требования к технологии:
концентрированный формалин (конц. до 55 процентов) производится на металлооксидном катализаторе при температуре в слое катализатора 330 - 380 °C.
При протекании хим. реакции конверсии метанола в формальдегид выделяется большое количество тепла, которое утилизируется путем производства пара высокого давления, который экспортируется за границы установки и который может быть использован на других производствах в качестве теплоносителя
31 декабря 2069 г.
да
обязательно
наличие систем комплексной механизации и автоматизации производственных процессов, дистанционного контроля и мониторинга параметров технологического процесса позволит достичь высокого качества производимой продукции, соответствующей международным стандартам качества, что в перспективе делает ее конкурентной на международном рынке
2
342.
Технология получения фенол формальдегидных смол для теплоизоляционных материалов 3 - 5 поколения
смолы аминоальдегидные, смолы фенолоальдегидные и прочие полиуретановые смолы в первичных формах
20.16.56
смолы производятся на основании органических катализаторов, отличаются простотой применения и высоким временем желатинизации, позволяющим получить хорошее распределение связи по всему объему теплоизоляционного материала и неорганических катализаторов, содержат небольшое количество фенола и формальдегида, имеют короткое время желатинизации, что позволяет использовать их на линии с короткими камерами термообработки. Низкое содержание свободного фенола (< 0,3 процентов) в смолах четвертого поколения также делает их весьма интересным решением для производства теплоизоляционных плит для "мокрых штукатурных фасадов". Смолы пятого поколения, содержащие не более 0,05 процентов свободных мономеров (фенол, формальдегид) и катализатор, который в ходе процесса производства смолы встраивается в полимерную сетку.
Требования к технологии:
процесс производства основан на поликонденсации фенола с формальдегидом концентратом в присутствии щелочного катализатора (резолы) с модификаторами;
работа на безметанольном концентрированном (50 - 52 процентов) формалине;
компьютеризированная система управления синтезом
31 декабря 2035 г.
да
обязательно
потенциал присутствует - получение новых типов смол на базе внедренной технологии
3
343.
Технология производства простых эфиров целлюлозы
пластмассы в первичных формах прочие, не включенные в другие группировки
20.16.59
технические характеристики:
содержание метоксильных групп от 0,1 - 30 процентов;
гидроксильные группы от 0,9 - 10 процентов;
вязкость, мПа.с (2 процентов водный раствор, 20 градусов Цельсия) от 50 - 100000;
зольность: 1 процентов;
влажность: 5 процентов
31 декабря 2030 г.
да
обязательно
заявленная технология имеет потенциал в расширении номенклатуры производимой продукции
2
344.
Технология промышленного производства высоконаполненных дисперсно-армированных литьевых композиционных марок полимерных материалов на основе суперконструкционных полимеров
пластмассы в первичных формах прочие, не включенные в другие группировки
20.16.59
технические характеристики:
сокращение трудоемкости изготовления деталей в 5 - 10 раз, снижение габаритно-массовых характеристик на 10 - 20 процентов:
значительное снижение себестоимости производства и повышение технологичности серийных изделий;
повышение эксплуатационных характеристик и надежности изделий. Требования к технологии:
высокопроизводительная технологии переработки литьем под давлением, в том числе армированных деталей сложной геометрической конфигурации
30 июня 2030 г.
да
необязательно, поскольку в результате внедрения технологии будет создано производство конкурентоспособной на внешнем рынке продукции
присутствует потенциал разработки специальных рецептур. Модификация и адаптация материала для специальных отраслевых требований и стандартов, с последующей сертификацией паспортизацией
2
345.
Технология изготовления полифениленсульфида с повышенной эластичностью для производства изделий с экстремальными условиями эксплуатации
полисульфоны, полисульфиды, гидрополисульфаны в первичных формах
20.16.59.120
полифениленсульфид по предлагаемой технологии будет иметь следующие технические характеристики:
прочность при разрыве 60 МПа;
модуль упругости 2800 МПа;
удлинение при разрыве 40 процентов;
прочность при изгибе 90 МПа;
горючесть V-0;
электрическая прочность 20 кВ/мм;
удельное объемное электрическое сопротивление 1016 ом·см. Требования к технологии:
будет изготавливаться методом поликонденсации сульфида натрия с пара-дихлорбензолом в амидном апротонном растворителе с использованием специальных добавок и модификаторов.
1 января 2040 г.
да
неприменимо
присутствует потенциал совершенствование метода производства, который усилит существующие продукт и может привести к появлению новых уникальных свойств технологии производства и самой продукции
2
346.
Технология производства материалов для экструзии высокотемпературной огнестойкой кабельной изоляции, на основе полифенилен сульфида для применения в атомной энергетике, бурении и эксплуатации нефтяных и газовых скважин, автомобильной и аэрокосмической промышленности и подземного транспорта
полисульфоны, полисульфиды, гидрополисульфаны в первичных формах
20.16.59.120
технические характеристики:
является негорючими, более 30 лет сохраняет свои электрические свойства;
более 10в9 Рад - стойкость к радиационному излучению;
до 220 градусов Цельсия - химическая стойкость при высоких температурах;
Обладает постоянными свойствами электрической изоляции, высочайшая коррозионная и маслобензостойкость. Требования к технологии:
переработка методом экструзии
30 июня 2030 г.
да
неприменимо
присутствует потенциал разработки специальных рецептур. Модификация и адаптация материала для специальных отраслевых требований и стандартов, с последующей сертификацией паспортизацией
1
347.
Технология производства полимерных композиционных материалов на основе суперконструкционных полимеров (полифениленсульфида и полиэфирэфиркетона) для экструзии филамента 3D печати
полисульфоны, полисульфиды, гидрополисульфаны в первичных формах
20.16.59.120
технические характеристики:
температура работоспособности от -60 до + 240 градусов Цельсия;
более 10в9 Рад - стойкость к радиационному излучению;
химическая стойкость при высоких температурах;
постоянными свойствами электрической изоляции, высочайшая коррозионная и масло- бензостойкость;
перерабатываются методом экструзии
30 июня 2030 г.
да
неприменимо
потенциально возможна разработка специальных рецептур. Модификация и адаптация материала для специальных отраслевых требований и стандартов, с последующей сертификацией паспортизацией
1
348.
Технология синтеза веществ для гидроразрыва пласта на низковязких системах и трудноизвлекаемых запасах на основе акриловой кислоты, акриламида, винилперролидона, 4-изобензосульфокислоты
полимеры акриловой кислоты в первичных формах
20.16.59.170
технические характеристики производимых продуктов будут соответствовать:
Полиакриламид:
ISO 13500.
Синтетический гелеобразователь:
API RP 39-2
Стандарт TNK-BP молекулярный вес до 20 млн, степень гидролиза до 20 процентов, содержание остаточного мономера менее 0,1 процентов
1 января 2050 г.
да
неприменимо
реализация проекта позволит устранить зависимость от импорта Российских нефтесервисных компаний и со временем вывести Российский продукт на международный рынок. Полученный полиакриламид позволит частично отвязать рынок от Индийской гуаровой камеди. Потенциал развития технологии заключается в разработке и усовершенствовании продукта для возможного применения в условиях, повышенной температуры и минерализации воды. Кроме того, возможно применение модифицированных продуктов для других целей, а именно для водоподготовки, буровых растворов, технологий поддержания пластового давления
1
349.
Технология понизителя синтеза фильтрации (понизителя водоотдачи) для цементирования скважин на основе акриловой кислоты, 2-акриламид-2-метилпропана, сульфоной кислоты
полимеры акриловой кислоты в первичных формах
20.16.59.170
технические характеристики производимых продуктов будут соответствовать:
понизитель фильтрации по ISO 10426-2-2003; цементы и материалы для цементирования скважин.
API RP 10B-2: Внешний вид;
Порошок от белого до бежевого цвета;
насыпная плотность при 200 C, кг/м3 500 - 800;
Содержание влаги не более 8 процентов;
Фильтрационные потери, мл < 100;
Растворим в воде pH 1 процентов;
вязкость водного раствора 20 г/л;
Требования к технологии:
технология производства заключается в радикальной полимеризации мономеров акриловой кислоты в химическом реакторе перемешивания в течении 3 часов с дальнейшей сушкой полученного при полимеризации
1 января 2050 г.
да
обязательно
после выхода в серийное производство, планируется производство универсального сушильного комплекса на собственном производстве, что в дальнейшем позволит увеличить производительность товарной продукции и освоить производство уникальных для страны сушильных комплексов. В результате реализации проекта будет создано производство понизителя фильтрации для цементирования скважин, которое позволит устранить зависимость от импортной продукции и единственного отечественного производителя, а также позволит нефтяным и нефтесервисным компаниям приобретать качественный продукт по конкурентоспособным ценам
2
350.
Технология производства ионообменных смол на основе синтетических полимеров
смолы ионообменные на основе синтетических полимеров в первичных формах
20.16.59.320
проект предполагает собой производство ионообменных смол как на стирольной основе так и акриловой. Кроме того, в рамках проекта планируется освоить производство полуфабриката для производства ионообменных смол - дивинилбензола
1 июня 2030 г.
да
неприменимо
есть возможность модификации и оптимизации процесса производства продукции под потребности рынка с возможной адаптацией продуктового ассортимента и сокращения стадий технологических переделов
1
351.
Технология синтеза фенмедифама и десмедифама
гербициды
20.20.12
технические характеристики:
содержание основного вещества не менее 97 процентов;
pH 1 процентов - ой суспензии:
5,0 - 7,0 ед.; потери при сушке менее 1 процентов
31 декабря 2035 г.
да
неприменимо
данная современная технология может способствовать импортозамещению. Освоение производства действующих веществ для пестицидов на основе фосгена/трифосгена может служить базой для разработки высокомаржинальных малотоннажных алифатических изоцианатов (гексаметиленди-изоцианат и изофорондиизоцианат)
1
352.
Технология получения отечественных пленкообразующих лакокрасочных материалов на основе винилхлорида
краски на основе сложных полиэфиров, акриловых или виниловых полимеров в неводной среде
20.30.12.120
технические характеристики согласно базовой марке поливинилхлорида К40. Требования к технологии:
для производства указанного продукта используется марка поливинилхлорида с определенной молекулярной массой. Выбранное соотношение между молекулярной массой поливинилхлорида и его концентрацией в растворе обеспечивает сохранение вязкости раствора в течение длительного времени
31 декабря 2040 г.
да
необязательно, поскольку в результате внедрения технологии планируется создание конкурентоспособной на внешнем рынке продукции
в перспективе после внедрения технологии продукт отечественного производства заменит не менее 10 процентов ввозимых импортных аналогов. Дальнейшее развитие этой разработки позволит получать в промышленных количествах защитный состав и успешно конкурировать с импортными аналогами
2
353.
Технология производства гипоаллергенного антибактериального средства для профилактики и устранения рубцов
средство для ухода за кожей с гипоаллергенным антибактериальным свойством
20.42.15.190
требования к технологии:
синтез биосовместимой матрицы адъюванта - бемита, в специализированном реакторе с контролем температурного режима и параметрами механического воздействия на синтез
1 июня 2035 г.
да
обязательно
потенциал направлен на развитие процессов по восстановлению кожных покровов. Процесс лечения рубцов атрофического типа занимает длительное время и требует от пациента максимальной отдачи. 88 процентов людей во всем мире обладают атрофическими рубцами, причинами которых являются бытовые травмы, спорт, набор веса, беременность. Среди населения наблюдается перманентный рост озабоченности в вопросе внешнего вида.